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Abstract

In this paper, we consider algebras with involution over a ringC which is given by the quadratic
extension by i of an ordered ringR. We discuss the∗-representation theory of such∗-algebras
on pre-Hilbert spaces overC and develop the notions of Rieffel induction and formal Morita
equivalence for this category analogously to the situation forC∗-algebras. Throughout this paper,
the notion of positive functionals and positive algebra elements will be crucial for all constructions.
As in the case ofC∗-algebras, we show that the GNS construction of∗-representations can be under-
stood as Rieffel induction and, moreover, that formal Morita equivalence of two∗-algebras, which
is defined by the existence of a bimodule with certain additional structures, implies the equivalence
of the categories of strongly non-degenerate∗-representations of the two∗-algebras. We discuss var-
ious examples like finite rank operators on pre-Hilbert spaces and matrix algebras over∗-algebras.
Formal Morita equivalence is shown to imply Morita equivalence in the ring-theoretic framework.
Finally, we apply our considerations to deformation theory and in particular to deformation quanti-
zation and discuss the classical limit and the deformation of equivalence bimodules. © 2001 Elsevier
Science B.V. All rights reserved.

MSC:58H15; 81S99

Subj. Class:Quantum mechanics

Keywords:Deformation quantization; Algebraic Rieffel induction; Formal Morita equivalence

∗ Corresponding author.
E-mail addresses:henrique@math.berkeley.edu (H. Bursztyn), stefan.waldmann@ulb.ac.be (S. Waldmann).

1 Research supported by a fellowship from CNPq, Grant 200481/96-7.
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1. Introduction and motivation

In this work, we discuss algebras with a∗-involution over ordered rings, study their
representation theory, and develop tools analogously to the well-known case ofC∗-algebras.
Our main motivation comes from deformation quantization, where the star product algebras
still have a∗-involution but no topological structure like aC∗-norm, and there are further
examples and applications both in physics and mathematics. We start with an ordered ringR
and its quadratic ring extensionC = R(i), where i2 = −1, and consider∗-algebras overC.
The interplay between the ordering structure inR and the∗-involution gives rise to various
notions of positivity which make up the heart of this paper. We consider, for a∗-algebra over
C, the category of∗-representations on pre-Hilbert spaces overC and find that positivity
and∗-involution together are sufficiently powerful tools which enable us to formulate many
results known fromC∗-algebras in this purely algebraic framework. Following the general
idea of concentrating on the algebraic properties ofC∗-algebras, we consider in this paper
analogues of Rieffel induction and Morita equivalence as well as various aspects of formal
deformation theory related to these constructions.

The concept of Morita equivalence has been applied to many different categories in
mathematics, and its main goal is to explore the relationship between ‘objects’ and their
‘representation theory’, i.e. their ‘theory of modules’. This idea was first made precise in a
purely algebraic context, the category of unital rings, by Morita, see [7,55,56]: two unital
rings are called Morita equivalent if their categories of left modules are equivalent [54].
The main result of this theory states that Morita equivalent rings always come with a pair
of corresponding bimodules of a certain type in such a way that the functors implementing
the equivalence of the categories are actually equivalent to tensoring with these bimodules.
Morita equivalent rings share many ring theoretical properties, the ‘Morita invariants’,
like Hochschild cohomology and algebraicK-theory and properties like being Artinian,
semi-simple, or Noetherian, see [2,42,50]. They also have isomorphic lattices of ideals and
isomorphic centers. It follows that commutative unital rings are Morita equivalent if and
only if they are isomorphic, hence Morita equivalence is most interesting if at least one of the
rings is non-commutative. Commutativity is not Morita invariant and in fact, the classical
example of Morita equivalent rings is given by a unital ringR and the corresponding matrix
ringMn(R).

Since then, the notion of Morita equivalence has been adapted to many other algebraic
contexts, such as non-unital rings [1,3,61], monoids [6,48], coalgebras [52] as well as to more
topological and geometric settings, as for example topological groupoids [57], symplectic
groupoids and Poisson manifolds [79,80]. In a recent work, Ara [5] defined the notion of
Morita equivalence for rings with involution, which is related to the approach developed in
the present paper (see note added to the end of Section 10).

In the context ofC∗-algebras, the ‘theory of modules’ is given by∗-representations
on Hilbert spaces. Here Rieffel defined the notion of (strong) Morita equivalence and in-
duced representations motivated mainly by the theory of induced representations of locally
compact groups by closed subgroups [65,66]. In particular, a new and simpler proof of
Mackey’s imprimitivity theorem [53] was given in terms of groupC∗-algebras, see [65]
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and also [51,64] for further discussions and applications. A related approach was developed
by Fell in [41] for Banach algebras, which also led to a proof of Mackey’s imprimitivity
theorem through group algebras. The fundamental notion of induced representations of
C∗-algebras, now called ‘Rieffel induction’, is theC∗-algebra analogue of the older idea
of constructing functors between categories of modules over ringsR andS by means of
tensoring with an(R–S)-bimodule. In this purely algebraic setting, functors arising in this
way are rather general and, in fact, any equivalence of categories must be of this type (see
[7,76]). For Rieffel’s induction, one has to add additional structures to the bimodule in order
to end up again with a representation on a Hilbert space. This induction of∗-representations
as well as the notion of Morita equivalence have become important tools in the study of
C∗-algebras, and Morita equivalence is now one of the most important equivalence relations
in this category, see also [64,67] and references therein. Moreover, both Rieffel induction
and Morita equivalence ofC∗-algebras have been used in various fields of physics like
quantization and phase space reduction [51]; they also arise in the context of applications
of non-commutative geometry to string and M theory [30,69,71,72].

On the other hand, there are many situations in mathematics and physics where inter-
esting algebras occur which are notC∗-algebras and where no obvious embedding into a
C∗-algebra is available. The canonical commutation relations [q, p] = i~ are known to be
incompatible with a representation by bounded operators and, more generally, the commu-
tation relations in the universal enveloping algebra of a Lie algebra typically exhibit this
behavior. While in this case one can obtain bounded operator representations by passing to
unitary group representations, in the more general case ofq-deformed universal enveloping
algebras it is less evident whether one can ‘exponentiate’ in a meaningful way to obtain
bounded operator representations, see, e.g., [47] and references therein. Another typical
example is given by the algebra of (pseudo-)differential operators on a manifold. Certain
subspaces of pseudo-differential operators define∗-algebras, where the∗-involution can be
induced by their action on the smooth functions with compact support equipped with a Her-
mitian product given by a positive density, see, e.g., [15]. These operators are continuous
with respect to certain locally convex topologies of smooth functions, but they are typically
unbounded with respect to the operator norm induced by the pre-Hilbert space structure of
smooth functions with compact support. Finally, closely related to this situation, our main
example is given by deformation quantization as introduced by Bayen et al. [9]; see also
[73,77] for recent surveys. In this quantization scheme, the classical observable algebra is
given by the complex-valued smooth functions on a symplectic, or, more generally, on a
Poisson manifold and the pointwise product is deformed into a~-dependent associative
product, the star product, such that in zeroth order of Planck’s constant~, the star product
equals the pointwise product and in the first order the commutator yields i times the Poisson
bracket. The star product is usually considered as a formal power series in~ so one ends
up with a formal deformation in the sense of Gerstenhaber [42]. Thus, here the underlying
ground ring is changed fromR andC to R[[~]] andC[[~]], respectively. In addition, we
shall always assume that the function 1 is still the unit element with respect to the star
product and that the star product is bidifferential, a feature which is usually fulfilled and has
various important consequences concerning in particular the representation theory [75]. In
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the symplectic case, the existence of star products was first shown by DeWilde and Lecomte
[32], then independently by Fedosov [38,39], who gave a recursive construction, and Omori
et al. [60]. In the more general case of Poisson manifolds Kontsevich has shown this exis-
tence [49]. The classification up to cohomological equivalence is due to Nest and Tsygan
[58,59], Bertelson et al. [11], Deligne [31], Weinstein and Xu [78], and Kontsevich [49].

Common to all the above examples of associative algebras is that they all have a∗-involu-
tion: this is obvious in the case of a complexified universal enveloping algebra of a real Lie
algebra and for (pseudo-)differential operators, and it can also be achieved by some addi-
tional requirements for star products. Since noC∗-norm or similar topological structures are
present, we shall investigate∗-algebras from the algebraic point of view only (see [4,5] for a
related approach). On the other hand, there is a notion ofpositivityin the underlying ground
ring which is evident forR, but also the formal power seriesR[[λ]] with real coefficients
is an ordered ring. This positivity can be understood in an ‘asymptotic’ sense which fits
very well into the formal character of the star products. The star products can be understood
heuristically as ‘asymptotic expansions’ of a strict deformation quantization as formulated
by Rieffel [68], see also Landsman’s book [51], even if it is not clear whether such a strict
counterpart exists or not. On the other hand, it is clear from the physical point of view that
the formal character is not sufficient for a reasonable quantization. Thus one has to deal
with the problem of convergence of the formal star products. Starting in the formal frame-
work, this difficult question is usually attacked by considering suitable subalgebras, see, e.g.,
[13,15–17,24–27] and references therein. These investigations provide at least in some cases
a bridge between formal and strict deformation quantization. This motivates the idea that
the asymptotic point of view in formal deformation quantization already contains most of
the important information needed for quantization. We are then led to the program of finding
‘formal’ or ‘asymptotic’ analogues of various techniques and results known fromC∗-algebra
theory and applying them in a more algebraic framework, as in deformation quantization.
Certainly, this is of great interest if one wants to understand the classical and semi-classical
limits of these constructions but is not necessarily restricted to quantization, as the formal
parameter can correspond to other quantities like a coupling constant [34,35]. One can also
think of investigations of Connes’ non-commutative geometry [29] from the asymptotic
point of view. This all motivates us to consider∗-algebras over ordered rings in general.

In fact, several interesting results following this program have already been obtained,
starting with the investigation of the GNS construction in the formal case by Bordemann
and Waldmann [20,21]. Here the ordering structure of an ordered ring allows one to define
positive linear functionals of∗-algebras as in theC∗-algebra case which leads to the ana-
logue of the well-known GNS construction of∗-representations, see, e.g., [22,29,43]. It was
shown in [20,21] that this concept leads to a physically reasonable representation theory for
star products and has been extended and applied to various situations like deformation quan-
tization on cotangent bundles with the presence of a cohomologically non-trivial magnetic
field, i.e. a monopole [15], the WKB approximation [16,17,20], and thermodynamical KMS
states and their representations [18,19] including a formal Tomita–Takesaki theory [75].

In this paper we set up the general framework of∗-representations of∗-algebras over
ordered rings, develop the notions of algebraic Rieffel induction and formal Morita equi-
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valence, and apply our results to deformations of∗-algebras. In detail, we have obtained the
following results:

In Section 2, we discuss elementary properties of ordered rings, pre-Hilbert spaces,
∗-algebras and their∗-representations, as well as the definition of positive algebra elements
and approximate identities. The concept of a∗-algebra with sufficiently many positive
linear functionals turns out to be important. In this case, one obtains faithful pre-Hilbert
space representations and also nicer algebraic properties, like no non-zero normal nilpotent
elements. Moreover, such algebras are torsion-free, see Proposition 2.8.

In Section 3, we consider bimodules with inner products which take their values in a
∗-algebra and use such bimodules to obtain a purely algebraic version of Rieffel induction
in Theorem 3.5. Here everything is analogous to the case ofC∗-algebras except for the
important additional positivity requirement (P) which will be crucial throughout this paper.
We discuss some different and easier-to-use conditions (P1)–(P3) and (PC) which imply
(P), see Lemma 3.1.

Section 4 is devoted to various standard constructions related to Rieffel induction which
we shall need in the sequel. We consider direct sums in Lemma 4.1, tensor products in
Proposition 4.5 and the commutant of∗-representations in Proposition 4.2. We also discuss
how to use homomorphisms to construct bimodules with the needed inner products, see
Proposition 4.8. Furthermore, we show that the GNS construction of a representation can
be viewed as a particular case of Rieffel induction, see Proposition 4.7.

In Section 5, we develop the notion of an equivalence bimodule for two∗-algebras,
which is a bimodule together with two inner products, one for each∗-algebra, with some
compatibility properties (see Definition 5.1). Two∗-algebras are called formally Morita
equivalent if there exists such an equivalence bimodule, see Definition 5.3. We discuss
reflexivity and transitivity properties (Propositions 5.4 and 5.6) of this relation and define
the notion of a non-degenerate equivalence bimodule in Definition 5.9. The existence of
a non-degenerate equivalence bimodule then implies the equivalence of the categories of
strongly non-degenerate∗-representations, see Theorem 5.10. An example using the Grass-
mann algebra shows that the converse is not true in general (Corollary 5.20), as the prop-
erty of having sufficiently many positive linear functionals is preserved by formal Morita
equivalence, see Proposition 5.19. Finally, we consider the question of how to construct a
non-degenerate equivalence bimodule out of an equivalence bimodule in Proposition 5.22.

Section 6 contains the main examples. First we introduce the notion of finite rank operators
on a right module analogous to the compact operators in theC∗-algebra case and show that
for an equivalence bimodule the first algebra is isomorphic to the finite rank operators on
the equivalence bimodule with respect to the right module structure of the other algebra, see
Proposition 6.1. Next we consider the direct sumC(Λ), whereΛ is an arbitrary index set and
use this as aC-right module and as a left module for the finite rank operatorF(C(Λ)) onC
to show the formal Morita equivalence ofC andF(C(Λ)) and in particular the formal Morita
equivalence ofMn(C) andC in Proposition 6.10 and generalize this to arbitrary pre-Hilbert
spaces in the case of an ordered field (Proposition 6.8). Considering tensor products of
bimodules and the underlying∗-algebras in Proposition 6.9, we arrive in particular at the
formal Morita equivalence of a∗-algebraA andMn(A) providedA has an approximate
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identity, see Proposition 6.7. Finally, we consider full projections in Propositions 6.12 and
6.14.

In Section 7, we specialize to unital∗-algebras and prove that formal Morita equivalence
implies Morita equivalence in the sense of unital rings, see Corollary 7.3, and we also show
that the converse is not true in general. As a consequence, we prove that the centers of
formally Morita equivalent∗-algebras are∗-isomorphic, see Proposition 7.6, and we apply
this result to algebras of smooth functions, see Corollary 7.8. These results shall be used
later in Section 9, in the context of deformation quantization.

In Section 8, we start to set up the framework of formal deformations of∗-algebras and
their∗-representations. We consider formal associative deformations which allow in addition
for a deformation of the∗-involution. Then the important observation thatR[[λ]] is still an
ordered ring ifR is ordered shows that we stay in the same framework of∗-algebras over
ordered rings. We discuss deformations of positive linear functionals, positive deformations
of the ∗-algebras in the sense of [23, Definition 4.1], and deformations of approximate
identities, and consider the corresponding classical limits. Moreover, we define the classical
limit of a pre-Hilbert space overC[[λ]] and of ∗-representations, see Lemmas 8.2, 8.3 and
Proposition 8.5.

We continue the discussion of deformations and classical limits in Section 9 by defin-
ing the classical limit of bimodules. We show that the classical limit is a bimodule for the
classical limits of the corresponding algebras of the same type, see Proposition 9.4, and
compute the relation of the corresponding functors of algebraic Rieffel induction in Propo-
sition 9.5. Here the notion of positive deformations becomes crucial. In particular, formal
Morita equivalence of the deformed algebras implies, under some technical assumptions,
formal Morita equivalence of the classical limits, see Theorem 9.7. We conclude that for
Morita equivalent star products, the underlying manifolds have to be diffeomorphic and give
thereby an ‘asymptotic explanation’ why strongly Morita equivalent quantum tori must have
at least the same classical dimension. Finally, we discuss the other direction, namely the
deformation of (equivalence) bimodules with all their relevant structures and present one
basic example using a deformation of a∗-homomorphism in Proposition 9.11.

Section 10 contains a conclusion and several open questions related to our approach. In
Appendix A we collect some elementary properties of positive matrices and in Appendix
B we discuss positive functionals and elements for the algebra of smooth functions on a
manifold.

Notation. The formal parameter will be denoted byλ and corresponds in deformation
quantization in convergent situations directly to~. As we shall need various tensor products
we shall indicate the underlying ring sometimes as an index, but to avoid clumsy notation
we shall omit this whenever possible.

2. Ordered rings, pre-Hilbert spaces and∗∗∗-algebras

In this section we shall discuss some basic definitions and results on ordered rings as well
as on pre-Hilbert spaces and∗-algebras over such rings, see, e.g., [17,20,21,23], in order to
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find algebraic analogues of the corresponding constructions inC∗-algebra theory, see, e.g.,
the textbooks [22,29,43,51].

Let R be an associative, commutative ring with 16= 0 and letP ⊂ R. Then(R,P) is
called anordered ringwith positive elementsP if R is the disjoint unionR = −P∪{0}∪P
and for alla, b ∈ P one hasa+b,ab∈ P. As usual we definea > b if and only ifa−b ∈ P
and similarly ‘<’, ‘≥’, and ‘≤’ which provides an ordering for the ringR. Thena2 > 0 for
all a 6= 0 and hence 1> 0. Moreover,R is of characteristic zero, sincen1= 1+· · ·+1> 0,
andR has no zero divisors. The corresponding quotient fieldR̂ of R inherits the ordering
structure and becomes an ordered field by definingP̂ := {a/b|ab ∈ P} and the inclusion
R ↪→ R̂ preserves the order.

If R is an ordered ring, we considerC := R⊕ iR = R(i), where we endowC with the
structure of an associative, commutative ring by requiring i2 = −1. This quadratic ring
extension has again characteristic zero and no zero divisors. Elements inC are written as
z = a + ib with a, b ∈ R and we can embedR ↪→ C by a 7→ a + i0. As in the case of
complex numbers we define the complex conjugation inC by z = a + ib 7→ z̄ := a − ib.
Thenz ∈ C is real if z = z̄ which is the case ifz ∈ R ⊂ C. Moreover,z̄z ≥ 0 andz̄z = 0
if and only if z = 0.

Besides the real and complex numbers the basic example we have in mind is the formal
power series with real and complex coefficients, whereR[[λ]] is endowed with the canonical
ring ordering by settinga =∑∞r=r0λrar > 0 for a 6= 0 if ar0 > 0, wherer0 ∈ N is the first
index with non-vanishing coefficient. Note that this ordering is non-Archimedian since, e.g.
0< nλ < 1 for all n ∈ N.

Consider an ordered ringR and the corresponding quadratic ring extensionC and letH
be aC-module. A map〈·, ·〉 : H× H→ C satisfying

〈φ, aψ + bχ〉 = a〈φ,ψ〉 + b〈φ, χ〉, 〈φ,ψ〉 = 〈ψ, φ〉, and 〈φ, φ〉 ≥ 0 (2.1)

for all φ,ψ, χ ∈ H anda, b ∈ C is called asemi-definite Hermitian productfor H. If 〈·, ·〉
satisfies in addition to the non-degeneracy condition

〈φ, φ〉 = 0⇒ φ = 0, (2.2)

then〈·, ·〉 is called aHermitian productand(H, 〈·, ·〉) is called apre-Hilbert spaceover
C. Note that we have used the physicists’ convention of linearity in the second argument.
From the non-degeneracy it follows thatH is torsion-free. A linear mapU : H1 → H2,
whereH1 andH2 areC-modules with semi-definite Hermitian products, is calledisometric
if 〈Uφ,Uψ〉2 = 〈φ,ψ〉1 for all φ,ψ ∈ H1, andunitary if U is isometric and bijective.
As usual we conclude that the inverse of a unitary map is unitary and an isometric map is
automatically injective ifH1 andH2 are pre-Hilbert spaces.

Lemma 2.1. LetH be aC-module with semi-definite Hermitian product.

1. The Cauchy–Schwarz inequality

〈φ,ψ〉〈φ,ψ〉 ≤ 〈φ, φ〉〈ψ,ψ〉 (2.3)

holds for allφ,ψ ∈ H.
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2. The space{φ ∈ H|〈φ, φ〉 = 0} coincides withH⊥ := {φ ∈ H|∀ψ ∈ H : 〈φ,ψ〉 = 0}
which is aC-submodule ofH. The quotientH/H⊥ endowed with the Hermitian product
〈[φ], [ψ ]〉 := 〈φ,ψ〉 is a pre-Hilbert space overC.

The proof is as in the case of complex numbers with the only technicality that we have
to use the quotient fieldŝR andĈ to prove (2.3). Nevertheless (2.3) holds inR, see also
[21,75].

As we shall also need the degenerate case in the sequel, we shall now consider aC-module
H with semi-definite Hermitian product〈·, ·〉 more closely. For a givenA ∈ EndC(H), we
say that there exists an adjointB ∈ EndC(H) if one has

〈φ,Aψ〉 = 〈Bφ,ψ〉 (2.4)

for allφ,ψ ∈ H. In this caseB is called anadjointofA. Analogously, one defines adjoints of
mapsA ∈ EndC(H1,H2) for two C-modulesH1,H2 with positive semi-definite Hermitian
product. Next we define the spaces (cf., e.g., [75])

B(H) := {A ∈ EndC(H)|Ahas an adjoint}, (2.5)

I(H) := {N ∈ EndC(H)|imN ⊆ H⊥}, (2.6)

and similarlyB(H1,H2). We obtain immediately the following lemma by a straightforward
computation:

Lemma 2.2. LetH be aC-module with semi-definite Hermitian product and letA,B ∈
B(H) anda, b ∈ C. LetA∗, B∗ be adjoints ofA, B, respectively.

1. aA+ bB,AB∈ B(H) andāA∗ + b̄B∗,B∗A∗ are adjoints of aA+ bB, AB, respectively.
2. For any adjointA∗ of A one hasA∗ ∈ B(H) and A is an adjoint ofA∗.
3. I(H) ⊂ B(H) is a two-sided ideal ofB(H). Any adjoint of A is of the formA∗ + N ,

whereA∗ is a particular adjoint andN ∈ I(H) is arbitrary.

Next we consider an associative algebraA overC. An involutive antilinear map∗ : A→
A is called a∗-involutionforA if for all A,B ∈ A one has(AB)∗ = B∗A∗. An associative
algebra overC equipped with such a∗-involution is called∗-algebraoverC. As usual we
defineHermitian, normal, isometricandunitary elementsin A.

LetA be a∗-algebra andω : A→ C a linear functional. Thenω is calledpositiveif for
all A ∈ A one has

ω(A∗A) ≥ 0. (2.7)

If A has in addition a unit element 1 thenω is called astateif ω is positive andω(1) = 1. It
follows that for every positive linear functionalω one has the Cauchy–Schwarz inequality
(cf. [21, Lemma 5])

ω(A∗B) = ω(B∗A), (2.8)

ω(A∗B)ω(A∗B) ≤ ω(A∗A)ω(B∗B). (2.9)
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Using the positive linear functionals we can define positivity for algebra elements as well.
We have two reasonable possibilities for such a definition:

Definition 2.3. LetA be a∗-algebra overC = R(i). Then a Hermitian elementA ∈ A is
called

1. algebraically positive if there exist elementsBi ∈ A and positive numbersbi ∈ R, where
i = 1, . . . , n such thatA = b1B

∗
1B1+ · · · + bnB∗nBn;

2. positive if for all positive linear functionalsω : A→ C one hasω(A) ≥ 0.

The set of algebraically positive elements is denoted byA++ and the set of positive ele-
ments is denoted byA+.

In principle there is still another possibility as we are dealing with rings: we callA

weakly algebraically positiveif there is a positivep ∈ R such thatpA is algebraically
positive. But this coincides with algebraic positivity as soon as we pass to the quotient
fields. Clearly an algebraically positive element is positive whenceA++ ⊆ A+, but the
converse is not true in general. Nevertheless, in aC∗-algebra overC, both notions are
known to coincide since here any positive element has a unique positive square root.
As a first example of a∗-algebra overC and the corresponding positive elements we
mention then × n-matricesMn(C) as discussed in Appendix A. Moreover, we show
in Appendix B that this definition yields the expected result for smooth functions on a
manifold.

As in C∗-algebra theory, we use the positive elementsA+ to endow the Hermitian el-
ements with the structure of a half ordering by definingA ≥ B if A − B ∈ A+, where
A,B are Hermitian. In addition, we have the following characterization ofA++ andA+

analogously to the well-known case ofC∗-algebras, see, e.g., [22].

Lemma 2.4. LetA be a∗-algebra overC. ThenA++ andA+ are convex cones, i.e. for
A,B ∈ A++ (resp.A+) anda, b ≥ 0 we have aA+ bB∈ A++ (resp.A+). Furthermore,
for any positive linear functionalω and anyC ∈ A the functionalωC : A 7→ ω(C∗AC) is
positive and thusC∗A++C ⊆ A++ as well asC∗A+C ⊆ A+.

Let us now introduce the notion of an approximate identity motivated by the usual
C∗-algebra theory. Consider a directed setI , i.e. a partially ordered setI such that for
eachα, β ∈ I there exists aγ ∈ I such thatγ ≥ α, β. As we have no a priori notion of
convergence we have to rely on the following algebraic definition. Let{Eα}α∈I be a set of
elementsEα = E∗α ∈ A such that for allα < β we haveEα = EαEβ = EβEα. Moreover,
letA be filtered by subspacesAα also indexed byI , i.e. for allα ≤ β one hasAα ⊆ Aβ
andA = ⋃

α∈IAα. Finally, assume that for allA ∈ Aα one hasA = EαA = AEα. In
this case{Aα, Eα}α∈I is called anapproximate identityfor A. Note that we do not require
E2
α = Eα nor Eα ∈ Aα. In the following, we mainly consider∗-algebras which admit

such an approximate identity. IfA has a unit element then clearly{A,1} is an approxi-
mate identity. A less trivial example, and our main motivation, is given byC∞0 (M), the
algebra of complex-valued functions with compact support on a non-compact manifold
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(see Section 8). Using the Cauchy–Schwarz inequality one easily obtains the following
lemma:

Lemma 2.5. LetA be a∗-algebra overC with approximate identity{Aα, Eα}α∈I and let
ω : A → C be a positive linear functional. Thenω is real, i.e.ω(A∗) = ω(A) for all
A ∈ A. Moreover, if for someα ∈ I one hasω(E2

α) = 0 thenω|Aα
= 0.

Let us now discuss some notions concerning∗-representations of a∗-algebra overC.
From Lemma 2.2, we observe that for a pre-Hilbert spaceH over C, the algebraB(H)
is also a∗-algebra since any elementA ∈ B(H) has auniqueadjointA∗ and the map
A 7→ A∗ is obviously a∗-involution. Then a∗-representationπ of a ∗-algebraA on H
is a ∗-homomorphismπ : A → B(H), i.e. a linear map such thatπ(AB) = π(A)π(B)

andπ(A∗) = π(A)∗. As usual,π is calledfaithful if π is injective, andnon-degenerate
if π(A)φ = 0 for all A implies φ = 0. It follows that if A has a unit element then
π is non-degenerate if and only ifπ(1) = id. We shall also make use of the following
definition: a∗-representationπ is calledstrongly non-degenerateif the C-linear span of
all vectors of the formπ(A)φ with A ∈ A andφ ∈ H coincides with the whole space
H. If A has a unit element, then clearly non-degeneracy and strong non-degeneracy are
equivalent. In general, strong non-degeneracy implies non-degeneracy since if(π,H) is
strongly non-degenerate andφ ∈ H is a vector such thatπ(A)φ = 0 for all A ∈ A then
〈ψ,π(A)φ〉 = 〈π(A∗)ψ, φ〉 = 0 for all ψ ∈ H. But then we can choseAi andψi such
that

∑
iπ(A

∗
i )ψi = φ due to the strong non-degeneracy, whenceφ = 0 follows. Thus

(π,H) is also non-degenerate. Note that in the case of a∗-representation of aC∗-algebra
non-degeneracy implies that the span of allπ(A)φ is dense in the Hilbert spaceH. In the
following, the strongly non-degenerate case will be the most important one. Moreover,
π is calledcyclic with cyclic vectorΩ ∈ H if for all ψ ∈ H there is aA ∈ A such that
ψ = π(A)Ω. If any non-zero vector inH is cyclic thenπ is calledtransitive. The pre-Hilbert
spaceH is calledfiltered if there is a directed setI and subspaces{Hα}α∈I of H such that
Hα ⊆ Hβ for α ≤ β andH = ⋃

α∈IHα. Then the representationπ is calledcompatible
with the filtration if π(A)Hα ⊆ Hα for all α ∈ I . Finally, we callπ pseudo-cyclicif H
is filtered and each subspaceHα of the filtration is cyclic forπ with cyclic vectorΩα. In
this case{Ωα}α∈I are called thepseudo-cyclic vectorsof π . Note thatπ is not assumed to
be compatible with the filtration. If one has∗-representationsπ(i) for i ∈ I on pre-Hilbert
spacesH(i) then they induce a∗-representationπ on the direct orthogonal sumH = ⊕i∈IH(i)
in the usual way. Ifπ has no non-trivial invariant subspace thenπ is calledirreducible.
If π is a direct orthogonal sum of pseudo-cyclic∗-representations ofA thenπ is clearly
strongly non-degenerate.

Our main motivation to consider pseudo-cyclic representations is the fact thatC∞0 (M)
acts in a pseudo-cyclic way on itself (by left-multiplication) but there is no cyclic vector if
M is non-compact.

Let π1 andπ2 be two∗-representations ofA on H1 andH2, respectively, and letT :
H1 → H2 be a linear map. ThenT is called anintertwiner if π2(A)T = T π1(A) for all
A ∈ A. We are mainly interested inisometric, adjointable, or unitary intertwiners. Ifπ1
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is a ∗-representation ofA on H1 andT is a unitary mapT : H1 → H2 thenπ2(A) :=
T π1(A)T

−1 defines a∗-representation onH2 and if for two∗-representations there exists
such a unitary intertwiner then these representations are calledunitarily equivalent.

To study the∗-representations of∗-algebras, we consider the following categories. Denote
by ∗-Rep(A) the category of∗-representations ofA on pre-Hilbert spaces overC with
isometric (or adjointable, or unitary) intertwiners as morphisms. Since we shall mainly
be interested in strongly non-degenerate∗-representations of∗-algebras, we denote by
∗-Rep(A) the category of strongly non-degenerate∗-representations ofA.

Let us now briefly recall the algebraic GNS construction of∗-representations using posi-
tive functionals, as discussed in detail in [20,21]. Ifω : A→ C is a positive linear functional,
the spaceJω defined by

Jω := {A ∈ A|ω(A∗A) = 0} ⊆ A (2.10)

is a left ideal called theGel’fand idealof ω. The quotientHω := A/Jω carries a Hermi-
tian product defined by〈ψA,ψB〉 := ω(A∗B), whereψA,ψB ∈ Hω denote the equivalence
classes ofA,B ∈ A, respectively. SinceJω is a left ideal,Hω is aA-left module which gives
rise to theGNS representationπω defined byπω(A)ψB := ψAB. A straightforward com-
putation showsπω(A) ∈ B(Hω) andπω(A∗) = πω(A)∗ whenceπω is a∗-representation.

Now assume in addition thatA has an approximate identity{Aα, Eα}α∈I and define
Hω,α := πω(A)ψEα for α ∈ I . By definitionHω,α is a subspace ofHω which is cyclic for
πω with cyclic vectorψEα , though it may happen thatHω,α = {0} for someα. Moreover,
one immediately verifies thatHω,α ⊆ Hω,β for α ≤ β andHω =

⋃
α∈IHω,α. Thusπω

is pseudo-cyclic with pseudo-cyclic vectors{ψEα }α∈I . Finally, note thatπω is compatible
with this filtration and clearly

〈ψEα , πω(A)ψEα 〉 = ω(EαAEα) (2.11)

for all α ∈ I andA ∈ A. On the other hand, the GNS representation is already characterized
by this property.

Lemma 2.6. Let {Aα, Eα}α∈I be an approximate identity ofA andω : A → C a posi-
tive linear functional. Ifπ is a pseudo-cyclic∗-representation onH = ⋃

α∈IHα with
pseudo-cyclic vectorsΩα (same index set, but someΩα may be zero) which is compatible
with the filtration such that〈Ωα, π(A)Ωα〉 = ω(EαAEα) for all α ∈ I andA ∈ A, then
π is unitarily equivalent to the GNS representationπω by the filtration preserving unitary
map

U : Hω,α 3 πω(A)ψEα 7→ π(A)Ωα ∈ Hα. (2.12)

The proof is a straightforward verification using only the definitions. Note that in particular
U mapsψEα to Ωα. Note also that a GNS representation of a∗-algebra which has an
approximate identity is always strongly non-degenerate and thus non-degenerate. This is a
main reason why we are interested in∗-Rep(A).

The following additional property of a∗-algebra provides someC∗-algebra-like features
concerning Hermitian elements and faithful∗-representations.
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Definition 2.7. LetA be a∗-algebra overC. ThenA has sufficiently many positive linear
functionals if for any non-zero Hermitian elementH there exists a positive linear functional
of A such thatω(H) 6= 0.

Proposition 2.8. Let A be a ∗-algebra overC with an approximate identity. Then the
following conditions are equivalent:

1. A has sufficiently many positive linear functionals.
2. For any non-zero Hermitian elementH ∈ A there exists a∗-representationπ ofA with
π(H) 6= 0.

3. There exists a faithful∗-representation ofA.
In this case the following properties are also fulfilled:

4. If for A ∈ A one hasA∗A = 0 thenA = 0.
5. There are no non-zero nilpotent normal elements inA.
6. A is torsion-free, i.e. zA= 0 for 0 6= z ∈ C andA ∈ A impliesA = 0.

Proof. Assume (1) and let 06= H ∈ A be Hermitian and letα ∈ I be an index of the
approximate identity such thatHEα = H = EαH and choose a positive linear functionalω

with ω(H) 6= 0. Thenω(H) = ω(EαHEα) = 〈ψEα , πω(H)ψEα 〉ω shows thatπω(H) 6= 0
in the GNS representation corresponding toω proving (2). Assume (2), then the orthogonal
sum over all GNS representationsπ is faithful: it is clear thatπ(H) 6= 0 forH 6= 0 if H
is Hermitian or anti-Hermitian. LetA 6= 0 be not anti-Hermitian. ThenA + A∗ 6= 0 and
thusπ(A + A∗) 6= 0 sinceA + A∗ is Hermitian. Thusπ(A) = π(A∗)∗ is also non-zero
proving (3). Finally, letπ be a faithful∗-representation. Thus it is sufficient to prove (1)
for (a ∗-subalgebra of)B(H) for an arbitrary pre-Hilbert spaceH. LetH = H ∗ ∈ B(H)
be such that for allψ ∈ H we have〈ψ,Hψ〉 = 0. Then by the usual polarization argument
and the fact that 26= 0 in R we conclude〈ψ,Hφ〉 = 0 for all ψ, φ ∈ H. Hence, by the
non-degeneracy of the Hermitian product,H = 0 follows. Thus for a non-zero Hermitian
H ∈ B(H) there exists a vectorψ ∈ H with 〈ψ,Hψ〉 6= 0. ThenA 7→ 〈ψ,Aψ〉 is
the desired positive linear functional proving the equivalence of the first three properties.
Now assume that they are fulfilled. Then (4) follows immediately from the fact that one
has a faithful∗-representation. Now letH 6= 0 be Hermitian andEα as above andω a
positive linear functional withω(H) 6= 0. By the Cauchy–Schwarz inequality we have
ω(H)ω(H) ≤ ω(E2

α)ω(H
2)whenceω(H 2) 6= 0. By induction we conclude thatH 2n 6= 0

and thusH cannot be nilpotent. This proves (5) for Hermitian elements. Together with (4),
it also follows for normal elements. Finally, for (6) pass to a faithful∗-representation and
take expectation values. �

Corollary 2.9. LetAbe a∗-algebra overC with sufficiently many positive linear functionals
and approximate identity, and letA ∈ A. If ω(A) = 0 for all positive linear functionals
thenA = 0.

Proof. This follows since 2A can be written as complex linear combination of the Hermitian
elementsA+ A∗ and i(A− A∗). �



H. Bursztyn, S. Waldmann / Journal of Geometry and Physics 37 (2001) 307–364 319

We shall see examples for∗-algebras with sufficiently many positive linear functionals
later in this work and refer also to the (counter-)examples in [23, Section 2].

3. Bimodules and algebraic Rieffel induction

Now we want to transfer the usual construction of induced representations using Rieffel
induction (see [65] and, e.g., the textbook [51]) from the setting ofC∗-algebras to the more
algebraic framework of∗-algebras over ordered rings.

LetA,B be two∗-algebras overC = R(i), whereR is an ordered ring. Then we consider
a (B-A)-bimoduleBXA, i.e. aC-module endowed with aB-left actionLB and aA-right
actionRA written as

LB : B→ EndC(BXA)← A : RA, (3.1)

such that the left action with elements inB and the right action with elements inA commute.
We sometimes omit the explicit use of the mapsLB andRA and simply writeB · x and
x · A, respectively, whereA ∈ A, B ∈ B andx ∈BXA.

As an additional structure we consider a positive semi-definiteA-valued inner product
(a ‘rigging map’) onBXA which is a map

〈·, ·〉A : BXA × BXA→ A, (3.2)

satisfying the following defining properties

(X1) 〈x,ay+ bz〉A = a〈x, y〉A + b〈x, z〉A,
(X2) 〈x, y〉A = 〈y, x〉∗A,
(X3) 〈x, y · A〉A = 〈x, y〉AA,
(X4) 〈x, x〉A ≥ 0,

for all a, b ∈ C,A ∈ A andx, y, z ∈BXA. The positivity requirement can be sharpened in
two directions: we consider the following algebraic positivity

(X4a) 〈x, x〉A ∈ A++,

and the positive definiteness conditions

(X4′) 〈x, x〉A ≥ 0 and〈x, x〉A = 0 impliesx = 0,
(X4a′) 〈x, x〉A ∈ A++ and〈x, x〉A = 0 impliesx = 0,

for all x ∈ BXA. For most of our applications, (X4) will turn out to be sufficient and clearly
(X4a′) implies (X4a) as well as (X4′), and (X4a) as well as (X4′) imply (X4). Besides these
axioms for theA-valued inner product, we shall need a compatibility of the inner product
with theB-left action onBXA which motivates the requirement

(X5) 〈x, B · y〉A = 〈B∗ · x, y〉A
for all x, y ∈BXA andB ∈ B. For later use, we shall also mention the followingfullness
condition:

(X6)A = C-span{〈x, y〉A|x, y ∈BXA},
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which will guarantee the non-triviality of the constructions that follow. In the usualC∗-
algebra approach, one only demands that the span of all inner products〈x, y〉A is dense in
A but as we do not have any topologies we have to demand (X6).

Now we have all the requisites to describe the algebraic Rieffel induction following
almost literally the construction known fromC∗-algebras. We start with a∗-representation
πA ofA onH and assume we have a bimoduleBXA satisfying the axioms (X1)–(X5). Then
we shall construct a∗-representation ofB. To this end we consider theC-module

K̃ := BXA ⊗A H, (3.3)

where the ‘A-balanced’ tensor product⊗A is defined by using the right action ofA on

BXA and the left representationπA onH, i.e. we consider the tensor productBXA ⊗C H

and the subspaceN spanned by elements of the formx · A ⊗ ψ − x ⊗ πA(A)ψ . Then
K̃ :=B XA ⊗C H/N . In other words we identifyx · A ⊗ ψ with x ⊗ πA(A)ψ for all
x ∈ BXA, A ∈ A, andψ ∈ H. ThenK̃ carries a canonicalB-left action which we shall
denote byπ̃B given by

π̃B(B)(x ⊗ ψ) := (LB(B)x)⊗ ψ = (B · x)⊗ ψ. (3.4)

Note that this is indeed well-defined onK̃ sinceLB andRA commute. Moreover, sinceLB
is aB-representation it follows that̃πB is also aB-representation. Next we want to equip
K̃ with the structure of a positive semi-definite Hermitian product. Following the usual
construction we define forx ⊗ ψ, y ⊗ φ ∈ K̃
〈x ⊗ ψ, y ⊗ φ〉

K̃
:= 〈ψ,πA(〈x, y〉A)φ〉H̃, (3.5)

and extend this by linearity in the second and antilinearity in the first argument to an inner
product onBXA ⊗C H. A simple computation shows that〈·, ·〉

K̃
is indeed well-defined on

K̃. Moreover, the inner product〈·, ·〉
K̃

enjoys the symmetry property

〈x ⊗ ψ, y ⊗ φ〉
K̃
= 〈y ⊗ φ, x ⊗ ψ〉,

as an easy computation shows. Next we consider the compatibility of〈·, ·〉
K̃

with π̃B. Letx⊗
ψ ,y⊗φ ∈ K̃ be elementary tensors andB ∈ B. Then an easy computation using (X5) shows

〈x ⊗ ψ, π̃B(B)y ⊗ φ〉K̃ = 〈π̃B(B∗)x ⊗ ψ, y ⊗ φ〉K̃. (3.6)

By linearity it follows thatπ̃B(B∗) is an adjoint ofπ̃B(B).
It remains to prove that〈·, ·〉

K̃
is positive semi-definite. First notice that for allψ ∈ H the

linear functionalA 7→ 〈ψ,πA(A)ψ〉H is a positive linear functional onA. Thus we obtain
for elementary tensorsx ⊗ ψ ∈ K̃
〈x ⊗ ψ, x ⊗ ψ〉

K̃
= 〈ψ,πA(〈x, x〉A)ψ〉H ≥ 0, (3.7)

since by (X4) the algebra element〈x, x〉A ∈ A is positive. Note that our definition of positive
algebra elements comes in crucially in this context. Though〈·, ·〉

K̃
is positive on the elemen-

tary tensors iñK, we cannot a priori guarantee the positivity for arbitrary elements of the form
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x1⊗ψ1+· · ·+xn⊗ψn ∈ K̃. In the case ofC∗-algebras one uses the fact that a non-degenerate
∗-representationπ is the direct orthogonal sum of cyclic representations. Thus any element
in K̃ can be written as an orthogonal sum of elementary tensors and the positivity is easily
established, see, e.g., [51, Chapter VI, Section 2.2] or [64, Proposition 2.64].

As ∗-representations in our setting might not satisfy this condition in general, we have
to impose additional properties of the bimoduleBXA which are sufficient to guarantee the
positivity of 〈·, ·〉

K̃
. We define the following property:

(P) The inner product〈·, ·〉
K̃

is positive semi-definite for all representations(H, πA) ofA.

We list conditions which will imply this property, but remark that there are situations
where the positivity can be proven by other methods, see, e.g., the next section.

(P1)BXA = ⊕i∈IX(i) andX(i) ⊥ X(j) for all i 6= j ∈ I with respect to〈·, ·〉A.
(P2) TheA-right actionRA preserves this direct sum.
(P3) EachX(i) is pseudo-cyclic forRA with directed filtered submodulesX(i)=⋃α∈I (i)X

(i)
α

and pseudo-cyclic vectorsΩ(i)
α .

We also define a slightly weaker form of pseudo-cyclicity for the bimodule:

(PC) BXA =
∑
i∈IX(i) with orthogonalC-submodulesX(i) for i 6= j with respect to

〈·, ·〉A such that eachX(i) is pseudo-cyclic forRA with directed filtered submodules
X(i) =⋃α∈I (i)X(i) and pseudo-cyclic vectorsΩ(i)

α .

Note that for (PC) we do not require the sum decomposition to be direct since〈·, ·〉A may
be degenerate and moreover, we do not require the sum decomposition or the filtrations to
be compatible withRA.

Lemma 3.1. (P1)–(P3)⇒ (PC)⇒ (P).

Proof. The first implication is obvious so let us prove the second. Let(H, πA) be a
∗-representation ofA and consider̃K =B XA ⊗A H. DefineK̃(i) = X(i) ⊗A H which
is a C-submodule ofK̃ for all i ∈ I and clearly

∑
i∈I K̃(i) = K̃ though the sum may not

be direct. Even if the sum decomposition ofBXA were direct, the identifications in the
A-balanced tensor product could make the sum decomposition ofK̃ non-direct. Neverthe-
less they are orthogonal as one immediately can verify using (PC). To show that〈·, ·〉

K̃

is positive semi-definite we may restrict toK̃(i) for fixed i due to their orthogonality. Let
χ(i) = x(i)1 ⊗φ1+· · ·+x(i)n ⊗φn with x(i)k ∈ X(i) andφk ∈ H for k = 1, . . . , n. Then there is

aα ∈ I (i) such thatx(i)1 , . . . , x
(i)
n ∈ X(i)α and hence we findA1, . . . , An ∈ A such thatx(i)k =

Ω
(i)
α ·Ak for k = 1, . . . , n. Thusχ(i) = Ω(i)

α ⊗ φ with φ = πA(A1)φ1+ · · · +πA(An)φn.
Hence by (3.7) the positivity〈χ(i), χ(i)〉

K̃
≥ 0 easily follows, proving (P). �

Nevertheless, in most of our examples we shall deal with (P1)–(P3) and not with (PC). We
shall even encounter situations where we can prove (P) directly without (P1)–(P3) or (PC).
Taking (P1)–(P3) or (PC) as an example of how to guarantee (P), we investigate now the con-
sequences of (P) in general. The following technical remark will be useful in a few situations.
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Lemma 3.2. AssumeBXA satisfies(P)and letH̃ be aC-module with positive semi-definite
Hermitian product and a representation ofA by adjointable operators. Then the inner
product defined by(3.5)onBXA ⊗A H̃ is positive semi-definite.

Proof. This is a simple consequence of (P) obtained by passing to the pre-Hilbert space
H̃/H̃⊥. �

Under the assumption thatBXA satisfies (P) we obtain a positive semi-definite Hermitian
product forK̃. Moreover,π̃B(B) ∈ B(K̃) due to (3.6) for allB ∈ B. Nevertheless the inner
product〈·, ·〉

K̃
may be degenerate and thus we have to quotient out the vectors of length

zero. Hence we define

K := K̃/K̃⊥, (3.8)

which is now a pre-Hilbert space overC. The following simple lemma ensures that we
obtain a∗-representation ofB on K̃:

Lemma 3.3. LetH̃be aC-module with semi-definite Hermitian product and letH = H̃/H̃⊥.

1. The algebraB(H̃)/I(H̃) has a canonical∗-involution given by[A]∗ := [A∗], whereA∗

is an adjoint ofA ∈ B(H̃).
2. The mapB(H̃)/I(H̃) 3 [A] 7→ ([ψ ] 7→ [Aψ ] ∈ H) ∈ B(H) is an injective∗-homo-

morphism.

From this lemma and (3.6) we conclude that the representationπ̃B of B on K̃ passes to the
quotientK and yields a∗-representationπB of B onK given on elementary tensors by

πB(B)[x ⊗ ψ ] := [π̃B(B)(x ⊗ ψ)] = [B · x ⊗ ψ ] (3.9)

for B ∈ B andx ⊗ ψ ∈ K̃. We shall callπB the induced representationof B and the
above construction shall be called thealgebraic Rieffel inductionin analogy to the Rieffel
induction in the theory ofC∗-algebras.

Proposition 3.4. LetA, B be ∗-algebras overC andBXA a (B-A)-bimodule satisfying
(X1)–(X5) and (P).Then for any∗-representationπA on a pre-Hilbert spaceH the space
K̃ = BXA ⊗A H carries aB-representationπ̃B and a positive semi-definite Hermitian
product which induce a∗-representationπB ofB on the pre-Hilbert spaceK := K̃/K̃⊥.

To complete the construction of induced representations we have to check whether the
above construction is functorial. This can be done as in theC∗-algebra case. Let(H1, π

(1)
A )

and(H2, π
(2)
A ) be two∗-representations ofA and letU : H1→ H2 be an intertwiner. Then

we defineṼ : K̃1→ K̃2 by

Ṽ (x ⊗ ψ) := x ⊗ Uψ (3.10)

for x⊗ψ ∈BXA⊗AH1 and extend this by linearity. First note thatṼ is indeed well-defined
sinceU is an intertwiner. Moreover, we clearly have for allB ∈ B
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Ṽ
(
π̃
(1)
B (B)(x ⊗ ψ)

)
= π̃ (2)B (B)

(
Ṽ (x ⊗ ψ)

)
, (3.11)

whenceṼ is an intertwiner from̃π(1)B to π̃ (2)B . If we assume in addition thatU is an isometric

intertwiner, then a simple computation shows thatṼ : K̃1 → K̃2 is also isometric. Thus
Ṽ passes to the quotients and yields an isometric mapV : K1 → K2 which now is an
isometric intertwiner fromπ(1)B to π(2)B . Analogously, ifU is an intertwiner with adjoint,
thenṼ also has an adjoint and passes to the quotient as an adjointableV . We conclude that
the algebraic Rieffel induction is indeed functorial in the category of∗-representations with
isometric or adjointable intertwiners. Moreover, we emphasize that ifU is unitary thenV is
unitary as well. For a given bimoduleBXA which satisfies (X1)–(X5) and (P) we denote the
correspondingfunctorbyRX :∗-rep(A)→∗-rep(B), whereRX : (H, πA) 7→ (RXH :=
K,RXπA := πB) andRX : U 7→ RXU := V as above.

Theorem 3.5. Let A, B be ∗-algebras overC. Then any(B-A)-bimoduleBXA which
satisfies(X1)–(X5) and(P) yields a functorRX :∗-rep(A)→∗-rep(B).

Let us finally discuss the following non-degeneracy properties of the Rieffel induction: as
for the case of∗-representations we call the left-action ofB onBXA strongly non-degenerate
if theC-span of allB ·x withB ∈ B andx ∈ BXA coincides with the whole spaceBXA, and
analogously for theA-right action. Then a straightforward computation yields the following
result:

Proposition 3.6. LetA,B be∗-algebras overC andBXA a bimodule satisfying(X1)–(X5)
and (P). If in addition theB-left actionLB on BXA is strongly non-degenerate then the
functorRX maps∗-rep(A) into ∗-Rep(B).

Remark 3.7. If the bimoduleBXA satisfies(P1)–(P3)then the right-actionRA of A is
automatically strongly non-degenerate.

4. Properties of the algebraic Rieffel induction

This section shall be dedicated to some standard constructions and first results on the
algebraic Rieffel induction, most of which have their analogues in the theory ofC∗-algebras.

First we shall consider the behavior ofRX with respect to direct sums of representations.
Let {H(i), π(i)A }i∈I be ∗-representations ofA and letH := ⊕i∈IH(i) be endowed with the
∗-representationπA := ⊕i∈I π(i)A . Then canonically

K̃ = BXA ⊗A H ∼= ⊕
i∈I B
XA ⊗A H(i) ∼= ⊕

i∈I
K̃(i), (4.1)

since the representationπA preserves the orthogonal sum decomposition ofH. Moreover,
K̃(i) and K̃(j) are orthogonal fori 6= j whence (4.1) is an orthogonal decomposition of
K̃. Note also that̃πB preserves this direct sum andπ̃B|K̃(i) = π̃

(i)

B for all i ∈ I whence
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π̃B = ⊕i∈I π̃ (i)B . Finally, as this direct sum is orthogonal, the decompositions ofK̃ andπ̃B
induce a corresponding decomposition ofK andπB. Thus we have the following lemma:

Lemma 4.1. LetA, B be ∗-algebras overC andBXA a bimodule satisfying(X1)–(X5)
and(P).Then canonically

RX

(
⊕
i∈I
H(i), ⊕

i∈I
π
(i)

A

)
∼=
(
⊕
i∈I
RXH

(i), ⊕
i∈I
RXπ

(i)

A

)
(4.2)

for any∗-representations{H(i), π(i)A }i∈I of A.

Note that it still may happen thatRX(H, πA) is trivial since we have not yet imposed any
non-triviality conditions on the bimoduleBXA such as the fullness condition (X6) or the
strong non-degeneracy ofLB. Nevertheless, the above lemma is very useful for questions
of irreducibility of the induced representations.

On the other hand, it was argued in [75] that the question of whether a representation is
irreducible or not is from the physical point of view in deformation quantization sometimes
notthe most important one, and the question of whether thecommutantof the representation
is trivial or not leads to physically more reasonable characterizations of the representations.
Though both concepts are known to coincide in the case ofC∗-algebras, this need not be
true in the general case of∗-algebras over ordered rings, see [75] for examples. Thus we
consider for a∗-representationπA of A onH the commutant

πA(A)′ := {C ∈ B(H)|∀A ∈ A : CπA(A) = πA(A)C} (4.3)

withinB(H). ClearlyπA(A)′ is a∗-subalgebra ofB(H)and we haveπA(A) ⊆ πA(A)′′ and
πA(A)′′′ = πA(A)′ as usual. LetB andBXA be given as above and considerC ∈ πA(A)′.
Then we defineΦ̃X(C) : K̃→ K̃ by

Φ̃X(C)(x ⊗ ψ) := x ⊗ Cψ (4.4)

for elementary tensors and extend this by linearity. ClearlyΦ̃X(C) is well-defined since
C ∈ πA(A)′. Moreover, sinceC ∈ B(H) we have an adjointC∗ of C and thus it follows
easily thatΦ̃X(C∗) is an adjoint ofΦ̃X(C). Thus we conclude that̃ΦX(C) ∈ B(K̃). By
Lemma 3.3 it follows thatΦ̃X(C) and Φ̃X(C∗) pass both to the quotientK and yield
ΦX(C),ΦX(C

∗) ∈ B(K) which are adjoints of each other. Note finally thatΦ̃X(C) is
clearly in the commutant of̃πB(B) and thusΦX(C) is in the commutant ofπB(B). A last
easy check shows that the mapC 7→ ΦX(C) is a∗-homomorphism ofπA(A)′ intoπB(B)′.
We summarize the result in the following proposition:

Proposition 4.2. LetA,B be∗-algebras overC andBXA a bimodule satisfying(X1)–(X5)
and (P).Then the functorRX yields a∗-homomorphismΦX : πA(A)′ → ((RXπA)(B))′
for all ∗-representations(H, πA).

Let us now investigate the relation between the algebraic Rieffel induction and ten-
sor products of∗-algebras. IfA1 andA2 are ∗-algebras overC then the tensor product
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A := A1⊗A2 (taken overC) is again an associative algebra overC, and by setting

(A1⊗ A2)
∗ := A∗1 ⊗ A∗2, (4.5)

we clearly obtain a∗-involution forA whenceA becomes a∗-algebra overC.

Lemma 4.3. LetA1,A2 be∗-algebras overC andA = A1⊗A2 their tensor product.

1. If A1 ∈ A++1 andA2 ∈ A++2 thenA1⊗ A2 ∈ A++.
2. If ω1 : A1→ C, ω2 : A2→ C are positive linear functionals thenω1⊗ ω2 : A→ C

is a positive linear functional.

Proof. The first part is trivial. For the second part considerA
(i)
1 ∈ A1, A(i)2 ∈ A2 with

i = 1, . . . , n. Then

ω1⊗ ω2



(∑

i

A
(i)
1 ⊗ A(i)2

)∗∑
j

A
(j)

1 ⊗ A(j)2




 = tr(MN),

where the matricesM,N ∈ Mn(C) are defined by their matrix elementsMij := ω1((A
(i)
1 )
∗

A
(j)

1 ) andNij := ω2((A
(j)

2 )∗A(i)2 ). ThenM andN are Hermitian and positive since for

v ∈ Cn and one clearly has〈v,Mv〉 = ω1(A
∗A) ≥ 0, whereA = v1A

(1)
1 + · · · + vnA(n)1

and analogously forN . Then tr(MN) ≥ 0 by Corollary A.5. �

Remark 4.4. Though the tensor product of positive functionals and the tensor product of
algebraically positive elements are(algebraically) positive, in the more general case of
positive elementsA1 ∈ A+1 , A2 ∈ A+2 there seems to be no simple answer to the question
of whetherA1⊗ A2 ∈ A+. The reason is that in order to establish positivity forA1⊗ A2

one has to testA1⊗A2 on all positive linear functionals ofA and not only on the positive
linear combinations of factoring ones.

Consider now∗-algebrasA1,A2,B1,B2 and bimodulesB1XA1 andB2XA2 out of which
we want to construct a (B-A)-bimoduleBXA whereA := A1 ⊗ A2 andB := B1 ⊗ B2.
To this end we setBXA := B1XA1 ⊗ B2XA1 which becomes a (B-A)-bimodule in the
usual way. Assume furthermore thatB1XA1 andB2XA2 are endowed withA1-valued and
A2-valued inner products, respectively, such that (X1)–(X3) are fulfilled. Then we define
anA-valued inner product forBXA by (anti-)linear extension of

〈x ⊗ y, x′ ⊗ y′〉A := 〈x, x′〉A1 ⊗ 〈y, y′〉A2. (4.6)

Clearly, (X1)–(X3) are also satisfied for〈·, ·〉A as an easy computation shows. Moreover,
if both inner products〈·, ·〉A1 and〈·, ·〉A2 satisfy (X5) then〈·, ·〉A satisfies (X5), too. The
same is true for the fullness condition (X6).

It remains to check the positivity of〈·, ·〉A under some positivity assumption for〈·, ·〉A1

and〈·, ·〉A2. Due to Remark 4.4, one expects this task to be more complicated in general.
Nevertheless we can prove the following proposition:
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Proposition 4.5. Let A1, A2, B1, B2 be ∗-algebras overC and letB1XA1 and B2XA2

be corresponding bimodules. Then we have forA := A1 ⊗ A2, B := B1 ⊗ B2 and

BXA =B1XA1⊗B2XA2:

1. BXA is a (B-A)-bimodule.
2. If B1XA1 andB2XA2 are endowed withA1-valued andA2-valued inner products, re-

spectively, satisfying(X1)–(X3) thenBXA also carries a canonicalA-valued inner
product which satisfies(X1)–(X3).

3. If in addition to(2) the inner products〈·, ·〉A1 and〈·, ·〉A2 satisfy(X5) then〈·, ·〉A also
satisfies(X5). The same holds for(X6).

4. If in addition to(2) the bimodulesB1XA1 andB2XA2 satisfy(X4a) and(P1)–(P3)then

BXA also satisfies(X4a)and(P1)–(P3).

Proof. It remains to check the last part. It is straightforward to verify thatBXA satisfies
(P1)–(P3) with the canonically induced direct sum and the corresponding tensor products
of the pseudo-cyclic vectors as pseudo-cyclic vectors for the Cartesian product of the cor-
responding index sets. Using the pseudo-cyclicity as well as (X4a) for each of the given
bimodules one finally verifies (X4a) for the new bimoduleBXA by a lengthy but easy
computation. �

Although there may be more general situations, where the tensor product of two such
bimodules with inner products yields a bimodule for the corresponding tensor product of
the∗-algebras, the above construction turns out to be quite useful in Section 6.

Next we shall mention the connection between algebraic Rieffel induction and the GNS
construction. Again we follow the well-known situation as inC∗-algebra theory, see, e.g.,
[51, Chapter IV, Section 2.2].

Let ω : A → C be a positive linear functional of a∗-algebraA over C. We regard
A =AAC as anA-left module and as aC-right module using the left-multiplication by
elements ofA on itself and the scalar multiplication by elements inC. Then we con-
sider〈·, ·〉ω:AAC×AAC → C defined by〈A,B〉ω := ω(A∗B). It follows immediately
that 〈·, ·〉ω is a C-valued inner product forAAC which satisfies (X1)–(X5). On the other
hand (P1)–(P3) arenot necessarily fulfilled. Nevertheless in this case we can prove (P)
directly.

Lemma 4.6. LetA be a∗-algebra overC andω : A → C a positive linear functional.
Then the(A-C)-bimoduleAAC endowed with the inner product〈·, ·〉ω induced byω satisfies
(X1)–(X5) and(P).

Proof. The verification of (X1)–(X5) is trivial. Thus it remains to show (P). First notice
that any∗-representationπC of C on a pre-Hilbert spaceH is of the formπC(z) = zP,
whereP = πC(1) is a Hermitian projection, and also that any such projection yields a
∗-representation ofC. ConsiderK̃ = A⊗π H, where the tensor product is now constructed
usingπ . Moreover, letψ1, . . . , ψn ∈ H andA1, . . . , An ∈ A. Using thatP 2 = P = P ∗,
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we then have〈∑
i

Ai ⊗ ψi,
∑
j

Aj ⊗ ψj
〉
K̃

=
∑

ij

ω(A∗i Aj )〈Pψi, Pψj 〉H = tr(MN),

whereM,N ∈ Mn(C) are defined byMij := ω(A∗i Aj ) andNij := 〈Pψj , Pψi〉H. As in
the proof of Lemma 4.3 we notice thatM as well asN are Hermitian and positive, whence
tr(MN) ≥ 0 by Corollary A.5. Thus (P) is shown. �

In order to obtain the GNS representationπω ofA as an induced representation we take a
particular∗-representation ofC, namely the∗-representation by left-multiplications ofC on
itself, where the inner product is given by〈z,w〉 = z̄w. Thus in this casẽK = A⊗C ∼= A
and〈A,B〉

K̃
= ω(A∗B) canonically. Hence

K̃⊥ = {A ∈ A|ω(B∗A) = 0 ∀B ∈ A} = Jω
coincides with the Gel’fand ideal and thusK = K̃/K̃⊥ = Hω is the correct GNS repre-
sentation space. Furthermore it is easy to see that in this case the induced representation
πA coincides with the GNS representationπω. Thus as inC∗-algebra theory the GNS
construction is a particular case of Rieffel induction.

Proposition 4.7. LetA be a∗-algebra overC andω : A→ C a positive linear functional.
Then the GNS representationπω coincides with the representation which is Rieffel induced
out of the canonicalC-representation on itself by means of the(A-C)-bimoduleAAC with
inner product given byω.

Finally, let us mention the following construction of a bimodule out of a∗-homomorphism
Φ : B→ A. We setBXA =Φ(B)AA with the usualA-right action on itself and theB-left
action given byΦ, i.e.LB(B)A := Φ(B)A. TheA-valued inner product is defined to be

〈A,A′〉A := A∗A′, (4.7)

and it is easily verified that〈·, ·〉A satisfies (X1)–(X3), (X4a), as well as (X5) sinceΦ is a
∗-homomorphism. Moreover, we can verify (P) directly: let(H, πA) be a∗-representation
of A and letψ1, . . . , ψn ∈ H andA1, . . . , An ∈ A then

∑
i,j

〈Ai ⊗ ψi,Aj ⊗ ψj 〉K̃ =
〈∑

i

πA(Ai)ψi,
∑
j

πA(Aj )ψj

〉
H

≥ 0

clearly shows (P). Moreover, ifA has even an approximate identity{Aα, Eα}α∈I then
(P1)–(P3) are also fulfilled using theEα as pseudo-cyclic vectors. Obviously, in this case
(X6) is also satisfied.

Proposition 4.8. LetA,B be∗-algebras overC and letΦ : B→ A be a∗-homomorphism.
ThenBXA =Φ(B)AA is a (B-A)-bimodule with canonicalA-valued inner product satisfy-
ing (X1)–(X3), (X4a), (X5)and(P).If A has in addition an approximate identity then(X6)
and(P1)–(P3)are also fulfilled.
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If we assumeA to have an approximate identity andπ to be a strongly non-degenerate
∗-representation ofA, then the induced representation in Proposition 4.8 is canonically
equivalent to the pull-back representation byΦ.

5. Equivalence bimodules and formal Morita equivalence

GivenA andB ∗-algebras overC, we saw previously how to construct a∗-functorRX :
∗-rep(A) → ∗-rep(B) associated to a (B-A)-bimoduleBXA (equipped with some extra
structure). In this section, we will be concerned with the question of how to define bimodules
that give rise to equivalence of categories.

First note that to each given (B-A)-bimoduleBXA, there naturally corresponds an
(A-B)-bimoduleAXB, defined as in the theory ofC∗-algebras (see [64,65]). We letX be the
C-module conjugate toX: as an additive group, we haveX = X, but if − : X→ X, x 7→ x

denotes the identity map, we define the scalar multiplication onX by ax = ax, a ∈ C. We
then define a leftA-action and a rightB-action onX by

Ax̄ = xA∗, x̄B = B∗x for A ∈ A, B ∈ B.

If 〈·, ·〉B is a positive semi-definiteB-valued inner product onAXB satisfying (X1)–(X5)
and (P), then we can consider the corresponding functorRX : ∗-rep(B) → ∗-rep(A),
which is a natural candidate for the inverse ofRX. Observe that the existence of such a
〈·, ·〉B is equivalent to the existence of a positive semi-definiteB-valued inner product on

BXA, defined byB〈x, y〉 = 〈x, y〉, x, y ∈BXA satisfying:

(Y1) B〈ax+ by, z〉 = aB〈x, z〉 + bB〈y, z〉,
(Y2) B〈x, y〉 =B〈y, x〉∗,
(Y3) B〈B · x, y〉 = BB〈x, y〉,
(Y4) B〈x, x〉 ≥ 0,
(Y5) B〈x · A, y〉 =B〈x, y · A∗〉

for all x, y, z ∈ BXA, a, b ∈ C,A ∈ A andB ∈ B. It is also clear that〈·, ·〉B satisfies (X6)
if and only if B〈·, ·〉 satisfies:

(Y6) B = C-span{B〈x, y〉|x, y ∈BXA},
also observe that〈·, ·〉B satisfies (X4a), (X4′) and (X4a′) if and only if B〈·, ·〉 satisfies the
corresponding conditions:

(Y4a)B〈x, x〉 ∈ B++,
(Y4′) B〈x, x〉 ≥ 0 andB〈x, x〉 = 0 impliesx = 0,
(Y4a′) B〈x, x〉 ∈ B++ andB〈x, x〉 = 0 impliesx = 0,

for all x ∈ BXA. Moreover, we define the following property:

(Q) We say thatBXA satisfies property (Q) if(AXB, 〈·, ·〉B) satisfies property (P).

We are now ready for the following definition.
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Definition 5.1. A (B-A)-equivalence bimodule is a (B-A)-bimodule in the sense of (3.1)
with the following additional structure:

(E1) AnA-valued inner product〈·, ·〉A satisfying (X1)–(X6).
(E2) AB-valued inner productB〈·, ·〉 satisfying (Y1)–(Y6).
(E3) The compatibility conditionB〈x, y〉 · z = x · 〈y, z〉A, x, y, z ∈BXA.
(E4)BXA satisfies both properties (P) and (Q).

We give a set of sufficient conditions to guarantee that property (Q) holds analogous to
conditions (P1)–(P3) for theB-action onBXA.

(Q1)BXA = ⊕j∈JX(j) andX(k) ⊥ X(j) for all k 6= j ∈ J with respect toB〈·, ·〉.
(Q2) The leftB-actionLB preserves this direct sum.
(Q3) EachX(j) is pseudo-cyclic forLB with filtered subspacesX(j) = ⋃β∈J (j)X

(j)
β and

pseudo-cyclic vectorsΩ(j)
β .

Remark 5.2. The conditions(Q1)–(Q3)are independent of(P1)–(P3)and we do not require
any compatibility between the rightA-action RA and (Q1)–(Q3)nor between the left
B-actionLB and(P1)–(P3).

It is then clear that a bimoduleBXA satisfying (E1)–(E3) and (P1)–(P3), (Q1)–(Q3) is
an equivalence bimodule.

Definition 5.3. A andB are called (formally) Morita equivalent if there exists a (B-A)-
equivalence bimoduleBXA.

Whenever the context is clear, we will refer to formal Morita equivalence simply as Morita
equivalence. From the definitions, we see that ifBXA is an equivalence bimodule, so is

AXB; hence Morita equivalence is a symmetric relation. We will next discuss reflexivity
and transitivity.

Proposition 5.4. SupposeA is a ∗-algebra over C with an approximate identity
{Eα,Aα}α∈I . LetB be a∗-algebra overC and supposeΦ : B → A is an isomorphism.
ThenA andB are (formally) Morita equivalent. In particular, A is Morita equivalent to
itself.

Proof. Consider the (B-A)-bimoduleBXA =Φ(B)AA as defined in Proposition 4.8 and
define on this bimodule aB-valued inner product given byB〈A1, A2〉 = Φ−1(A1A

∗
2). Then,

just as in Proposition 4.8, one can show that the axioms (X1)–(X3), (X4a), (X5), (X6) and
(P1)–(P3) hold, as well as (Y1)–(Y3), (Y4a), (Y5), (Y6) and (Q1)–(Q3). Finally, a simple
computation shows that (E3) also holds. �

We will now discuss transitivity properties of Morita equivalence. LetA,B andC be
∗-algebras overC. SupposeB andA are Morita equivalent, with equivalence bimodule
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BXA, and also thatA andC are Morita equivalent, with equivalence bimoduleAX′C . Before
we state the main result, we need the following observation:

Lemma 5.5. LetA ∈ A be positive. Then for allx′ ∈AX′C we have〈x′,Ax′〉C ∈ C+.

Proof. Let ω : C → C be a positive functional. Fixx′ ∈AX′C and consider the linear
functionalω̂ : A→ C onA, defined byω̂(A) = ω(〈x′,Ax′〉C). It is clear thatω̂(A∗A) ≥ 0
(by (X4)) for allA ∈ A and hencêω is positive. So ifA is positive,ω(〈x′,Ax′〉C) ≥ 0 for
all ω positive and the proof is complete. �

Proposition 5.6. Suppose thatBXA satisfies(P1)–(P3)andAX′C satisfies(Q1)–(Q3).Then
B andC are also Morita equivalent.

Proof. LetX′′ = X⊗A X′ be the (A balanced) tensor product ofBXA andAX′C . It has a
natural (B-C)-bimodule structure, and we denote it byBX′′C . Note that the formula

〈〈x1⊗ x′1, x2⊗ x′2〉〉C = 〈x′1, 〈x1, x2〉A · x′2〉C
uniquely defines a map〈〈·, ·〉〉C : BX′′C×BX′′C → C satisfying (X1)–(X3) and (X5).
Similarly,

B〈〈x1⊗ x′1, x2⊗ x′2〉〉 = B〈x1 ·A 〈x′1, x′2〉, x2〉
uniquely defines a mapB〈〈·, ·〉〉:BX′′C×BX′′C → C satisfying (Y1)–(Y3) and (Y5). Let us
show that〈〈·, ·〉〉C satisfies (X4). Recall that sinceBXA satisfies (P1)–(P3), anyz ∈BX′′C
can be written as

z =
∑
i

x
(i)
1 ⊗ x′1+ · · · + x(i)n ⊗ x′n, x

(i)
1 , . . . , x(i)n ∈ X(i).

But following conditions (P1)–(P3), we know that for eachi, there exists anαi such
that x(i)1 , . . . , x

(i)
n ∈ X(i)αi . So, we can findA(i)1 , . . . , A

(i)
n ∈ A such thatx(i)1 = Ω

(i)
αi ·

A
(i)
1 , . . . , x

(i)
n = Ω(i)

αi · A(i)n and hence

z =
∑
i

Ω(i)
αi
· A(i)1 ⊗ x′1+ · · · +Ω(i)

αi
· A(i)n ⊗ x′n =

∑
i

Ω(i)
αi
⊗ yi,

whereyi = A(i)1 · x′1+ · · · + A(i)n · x′n. Therefore, we have

〈〈z, z〉〉C =
∑
i,j

〈〈
Ω(i)
αi
⊗ yi,Ω(j)

αj
⊗ yj

〉〉
C =

∑
i,j

〈
yi,
〈
Ω(i)
αi
,Ω(j)

αj

〉
· yj

〉
C .

But sinceX(i) ⊥ X(j) for all i 6= j with respect to〈·, ·〉A, it follows that 〈〈z, z〉〉C =∑
i〈yi, 〈Ω(i)

αi ,Ω
(i)
αi 〉Ayi〉C and hence〈〈z, z〉〉C ≥ 0 by Lemma 5.5. Similarly, we can use

thatAX′C satisfies (Q1)–(Q3) to show thatB〈〈·, ·〉〉 is positive semi-definite. So we conclude
that 〈〈·, ·〉〉C satisfies (X1)–(X5) andB〈〈·, ·〉〉 satisfies (Y1)–(Y5). We also observe that it
follows from Remark 3.7 that the actions ofAonBXA andAX′C are strongly non-degenerate
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and an easy computation, like in the case ofC∗-algebras, shows that this implies the fullness
conditions (X6) and (Y6). A straightforward computation, also similar to theC∗-algebra
setting, shows that the compatibility condition (E3) is also satisfied.

So it only remains to check (E4) to conclude the proof. Let(K, πC) be a∗-representation
of C. Then, sinceAX′C satisfies (P), we can define a positive semi-definite Hermitian product

on H̃ =AX′C ⊗C K by

〈x′1⊗ k1, x
′
2⊗ k2〉H̃ = 〈k1, πC(〈x′1, x′2〉C)k2〉K, x′1, x

′
2 ∈ AX′C, k1, k2 ∈ K.

But now H̃ is aC-module with a positive semi-definite Hermitian product andA acts on
it by adjointable operators. So due to Lemma 3.2, we can define a positive semi-definite
Hermitian product onBXA ⊗A H̃ =B XA ⊗A (AX′C ⊗C K) by setting

〈x1⊗ (x′1⊗ k1), x2⊗ (x′2⊗ k2)〉 = 〈x1⊗ k1, (〈x1, x2〉A · x′2)⊗ k2〉H̃
= 〈k1, πC(〈x′1, 〈x1, x2〉Ax′2〉C)k2〉K.

Finally, note that the last expression is just the definition of the Hermitian product induced
on(BXA⊗AAX′C)⊗C K =BXA⊗A (AX′C⊗C K) by the bimoduleBX′′C =BXA⊗AAX′C .

So BX′′C satisfies property (P). Analogously,CX
′′
B also satisfies (P), for we can identify

CX
′′
B ∼= CX

′
A⊗AXB. �

It is important to point out that Proposition 5.6 does not show transitivity in general, but
it will still be useful later, in Section 6. We will finish this section with a discussion about
functors corresponding to equivalence bimodules. We will start with two lemmas which are
analogous to results inC∗-algebras.

Lemma 5.7. SupposeA,B are∗-algebras overC and letBXA be an equivalence bimodule.
Let (H, πA) be a strongly non-degenerate∗-representation ofA. ThenRX ◦ RX(H, πA)
is unitarily equivalent to(H, πA). Analogously, if(K, πB) is a strongly non-degenerate
∗-representation ofB, thenRX ◦RX(K, πB) is unitarily equivalent to(K, πB).

Proof. The proof basically follows [64, Section 3.3]. LetK̃ = BXA⊗AH andK = K̃/(K̃)⊥.
Also defineH̃′ =AXB⊗BKandH′ = H̃′/(H′)⊥. Note that there is a linear mapU : H→ H′
uniquely defined by

U([x̄ ⊗ [y ⊗ ψ ] ]) = πA(〈x, y〉A)ψ for x, y ∈ BXA, ψ ∈ H.

SinceπA is strongly non-degenerate and〈·, ·〉A is full, it immediately follows thatU is onto.
A simple computation using the definitions shows thatU preserves the Hermitian products,
and therefore it is unitary. It is also easy to check thatU intertwinesπA andRX ◦RX(πA).
Thus the conclusion follows. The same argument holds forB. �

Moreover, the previous construction is natural in the following sense.
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Lemma 5.8. Suppose we have two strongly non-degenerate∗-representations(H1, π
1
A)

and (H2, π
2
A) of A, and letT : H1 → H2 be an intertwiner operator(adjointable or

isometric). LetU1 : RX ◦RX(H1)→ H1 andU2 : RX ◦RX(H2)→ H2 be the two unitary
equivalences as in Lemma5.7.ThenU2◦(RX ◦RX(T )) = T ◦U1. An analogous statement
holds forB.

Proof. This is also a simple computation using the definitions, that can be carried out just
like in theC∗-algebra setting (see [64, Section 3.3]). �

Before we state the main theorem about equivalence of categories, we need the following
definition.

Definition 5.9. We call an equivalence bimoduleBXA non-degenerate if the actionsLB
andRA are both strongly non-degenerate.

It follows from Proposition 3.6 that ifBXA is a non-degenerate (B-A)-equivalence bimod-
ule then it makes sense to restrict the induced functorsRX,RX to strongly non-degenerate
representations:

RX : ∗-Rep(A)→ ∗-Rep(B) RX : ∗-Rep(B)→ ∗-Rep(A). (5.1)

We can then state the following theorem.

Theorem 5.10. LetA andB be ∗-algebras overC. If BXA is a non-degenerate(B-A)-
equivalence bimodule thenRX and RX define an equivalence of categories between
∗-Rep(A) and∗-Rep(B).

The proof is a direct consequence of Lemmas 5.7 and 5.8. Let us discuss some situations
where an equivalence bimoduleBXA is automatically non-degenerate. Observe that this is
clearly the case ifA andB are unital andLB(1B) = RA(1A) = id (see Remark 5.18). We
will now need the following lemma.

Lemma 5.11. LetB be a∗-algebra overC with approximate identity and letBX be a left
B-module equipped with aB-valued positive definite inner product. Then the action ofB on

BX is strongly non-degenerate. The same holds for rightA-modules with a corresponding
A-valued positive definite inner product〈·, ·〉A.

Proof. Note that for a generalB ∈ B, we have

B〈x − B · x, x − B · x〉 =B 〈x, x〉 − B B〈x, x〉 − B〈x, x〉B∗ + B B〈x, x〉B∗.
But sinceB has an approximate identity, we can findEα ∈ B such thatEαB〈x, x〉 =B〈x, x〉
Eα =B〈x, x〉 andEα = E∗α. So, forB = Eα we getB〈x −Eα · x, x −Eα · x〉 = 0 and by
non-degeneracy ofB〈·, ·〉 it follows thatx = Eα · x. The same argument can be applied to
rightA-modules. �

We then have the following result.
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Corollary 5.12. LetA andB be ∗-algebras overC with approximate identities and sup-
poseBXA is a (B-A)-equivalence bimodule satisfying(X4′) and (Y4′). ThenBXA is
non-degenerate. In particular, the induced functorsRX andRX define an equivalence
of categories between∗-Rep(A) and∗-Rep(B).

From Remark 3.7, we note that ifBXA is an equivalence bimodule satisfying (P1)–(P3),
(Q1)–(Q3), then the actionsLB andRA are strongly non-degenerate. The following corollay
follows immediately.

Corollary 5.13. If BXA is an equivalence bimodule satisfying(P1)–(P3), (Q1)–(Q3),then
RX andRX define an equivalence of categories between∗-Rep(A) and∗-Rep(B).

We call two ∗-algebras overC “categorically” Morita equivalent if they have equiva-
lent categories of strongly non-degenerate representations. Note that Theorem 5.10 shows
that formal Morita equivalence (through a non-degenerate equivalence bimodule) implies
“categorical” Morita equivalence. A natural question is then whether or not these two no-
tions are equivalent. We will now see that, as in the theory ofC∗-algebras (see [10,67]),
this is not the case. To this end, we will considerC and

∧
(Cn), the Grassmann algebra of

Cn. We define a∗-involution on
∧
(Cn) by setting 1∗ = 1 ande∗i = ei for all i = 1, . . . , n,

wheree1, . . . , en is the canonical basis ofCn (see, e.g., [23, Section 2] for a discussion about
this ∗-algebra). Let now(H, π) be a strongly non-degenerate∗-representation of

∧
(Cn).

Sinceπ(ei) is self-adjoint and nilpotent (fore1 ∧ e1 = 0), it follows from Proposition 2.8
thatπ(ei) = 0 for all i = 1, . . . , n and henceπ(ei1 ∧ · · · ∧ eir ) = π(ei1) . . . π(eir ) = 0
for all r ≥ 1 andij ∈ N (andπ(1) = id by non-degeneracy). If we think ofC as embed-
ded in

∧
(Cn) in the natural way, we can then conclude that any strongly non-degenerate

∗-representation ofC extends uniquely to a strongly non-degenerate∗-representation of∧
(Cn) and it is also clear that any such representation of

∧
(Cn) can be restricted toC.

It is easy to check that this correspondence actually establishes an equivalence of cat-
egories between∗-Rep(C) and ∗-Rep(

∧
(Cn)). Hence we have the following proposi-

tion.

Proposition 5.14. ∗-Rep(C) and∗-Rep(
∧
(Cn)) are equivalent categories.

We will now show, however, thatC and
∧
(Cn) are not formally Morita equivalent. In

order to do that, we need to observe a couple of general results about equivalence bimodules.
So letA andB be two∗-algebras overC.

Lemma 5.15. Let BXA be a (B-A)-bimodule satisfying(E2). If B has an approximate
identity, then the action mapLB : B → EndA(BXA) is injective. IfBXA satisfies(E1),
then an analogous statement holds forA andRA.

Proof. SupposeLB(B) = 0. SinceB has an approximate identity, there existsEα ∈ B such
thatB = EαB and using thatB〈·, ·〉 is full, we can writeEα =B〈x1, y1〉+· · ·+ B〈xn, yn〉.
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So

B=B(B〈x1, y1〉 + · · · + B〈xn, yn〉)= B〈LB(B)x1, y1〉+ · · · + B〈LB(B)xn, yn〉=0,

since we are assuming thatLB(B) = 0. The same argument applies toA andRA. �

We now define

NA = {x ∈ BXA|〈x, y〉A = 0∀y ∈ BXA} and

NB = {x ∈ BXA|B〈x, y〉 = 0∀y ∈ BXA}, (5.2)

and observe the following proposition.

Proposition 5.16. LetBXA be a(B-A)-bimodule satisfying(E1)–(E3)and assumeA and
B have approximate identities. ThenNA = NB = N andBXA/N is still a (B-A)-bimodule
satisfying(E1)–(E3).Furthermore, ifBXA is an equivalence bimodule, then so isBXA/N .

Proof. Supposex ∈ NA and lety, z ∈BXA. Then note thatLB(B〈y, x〉)z = yRA(〈x, z〉A)
= 0. Sincez is arbitrary, it follows thatLB(B〈y, x〉) = 0 and hence Lemma 5.15 implies that

B〈y, x〉 = 0 for all y ∈BXA. Sox ∈ NB. We can then reverse the argument and conclude
thatNA = NB. It is not hard to check thatBXA/N still carries a natural leftB-action and
a rightA-action (sinceN is bothA andB invariant). Moreover, we can also defineA- and
B-valued inner products onBXA/N in the natural way and a simple computation shows
that all the properties of an equivalence bimodule still hold. �

Remark 5.17. Observe that it is not necessarily true thatNA = {x ∈BXA|〈x, x〉A = 0}.
Thus, the inducedA-valued inner product onBXA/N does not necessarily satisfy(X4′)
(and similarly, the inducedB-valued inner product onBXA/N does not necessarily satisfy
(Y4′)). However, there are important situations where the induced inner product on the
quotient is in fact strictly positive, see Lemma5.21.

Remark 5.18. SupposeA is unital. In this case, we observe that ifBXA is such that
〈x, y〉A = 0 for all y ∈BXA implies thatx = 0, thenRA(1A) = id. To see that, just note
that 〈x, y〉A = 〈x, y〉A · 1A = 〈x, y · 1A〉A for all x, y ∈BXA and clearly the analogous
statement forB and LB also holds. Hence, it follows from Proposition5.16 that we can
assume, without loss of generality, thatRA(1A) = LB(1B) = id.

We can now prove the following proposition.

Proposition 5.19. SupposeAandB are∗-algebras with approximate identities, and assume
Ahas sufficiently many positive linear functionals. LetBXA be a(B-A)-bimodule satisfying
(E1)–(E3).ThenB also has sufficiently many positive linear functionals.

Proof. By Proposition 5.16, we can assume that〈·, ·〉A satisfies〈x, y〉A = 0 for all
y ∈ BXA implies thatx = 0. Letω be a positive linear functional inA andx ∈BXA. Note
that the mapB 7→ ω(〈x, B ·x〉A) defines a positive linear functional inB. LetB = B∗ ∈ B.
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To show thatB has sufficiently many positive linear functionals, it suffices to show that if
B 6= 0, then there existsω andx such thatω(〈x, B · x〉A) 6= 0. To see that, suppose that
for all x ∈ BXA andω positive linear functional inA, we haveω(〈x, B · x〉A) = 0. Then
sinceA has sufficiently many positive linear functionals, it follows that〈x, B · x〉A = 0
for all x. But then, by polarization, it follows that 4〈x, B · y〉A = 0 for all x, y ∈BXA, and
hence〈x, B · y〉A = 0 for all x, y ∈BXA sinceA is torsion-free (see Proposition 2.8). But
then we must haveB · x = 0 for all x ∈BXA and hence by Lemma 5.15 we conclude that
B = 0. This finishes the proof. �

It is easy to check that
∧
(Cn) is not an algebra with sufficiently many positive linear

functionals (see, e.g., [23, Section 2]) We then have the following immediate corollary.

Corollary 5.20. The∗-algebrasC and
∧
(Cn) are not formally Morita equivalent.

Finally, we will show that if two∗-algebras with sufficiently many positive linear function-
als (and approximate identities) are formally Morita equivalent, then there actually exists an
equivalence bimodule satisfying (X4′) and (Y4′). This will be an immediate consequence
of the following lemma.

Lemma 5.21. LetA andB be∗-algebras with sufficiently many positive linear functionals
and approximate identities. LetBXA be an equivalence bimodule. Then

NA = {x ∈ BXA|〈x, x〉A = 0}.

In particular, there is a well-defined strictly positiveA-valued inner product onBXA/NA.
An analogous statement holds forNB andB〈·, ·〉.

Proof. Note that given a positive linear functionalω, we can define a positive semi-definite
Hermitian product onBXA by (x, y) 7→ ω(〈x, y〉A). It then follows from (2.3) that

ω(〈x, y〉A)ω(〈x, y〉A) ≤ ω(〈x, x〉A)ω(〈y, y〉A). (5.3)

So, if 〈x, x〉A = 0 it follows thatω(〈x, y〉A) = 0 for all positive linear functionalω.
Hence, by Corollary 2.9, we have that〈x, y〉A = 0 for all y ∈BXA. The conclusion is now
immediate and the same argument can be used forB〈·, ·〉. �
Then we can state the following result, which follows from Lemma 5.21 and Proposition
5.16.

Proposition 5.22. LetA andB be∗-algebras with sufficiently many positive linear func-
tionals and approximate identities and suppose they are formally Morita equivalent. Then
there exists a(B-A)-equivalence bimodule satisfying(X4′) and(Y4′).

Note that it follows immediately from Corollary 5.12 that ifA andB are∗-algebras with
sufficiently many positive linear functionals and approximate identities which are Morita
equivalent, then∗-Rep(A) and∗-Rep(B) are equivalent categories.



336 H. Bursztyn, S. Waldmann / Journal of Geometry and Physics 37 (2001) 307–364

6. Formal Morita equivalence for matrix algebras and full projections

We will start this section by discussing how (formally) Morita equivalent∗-algebras can
be constructed out of each other, in analogy with the theory ofC∗-algebras (see [64,65]).

LetA be a∗-algebra overC and letXA be a rightA-module equipped with a positive
semi-definiteA-valued inner product〈·, ·〉A. Then we can consider the set of all endomor-
phisms ofXA (that is, rightA-linear maps), denoted EndA(XA) and define

B(XA) = {T ∈ EndA(XA)|T has an adjoint with respect to〈·, ·〉A}. (6.1)

We can also define, for eachx, y ∈ XA, the “rank one” operators

Θx,y(z) = x · 〈y, z〉A, z ∈ XA (6.2)

and then consider the “finite rank operators”

F(XA) = C-span{Θx,y |x, y ∈ XA}. (6.3)

A simple computation shows thatΘy,x is an adjoint forΘx,y and henceF(XA) ⊆ B(XA).
We can then regardF(XA) as a∗-algebra by settingΘ∗x,y = Θy,x . It is easy to check that
F(XA) is a two-sided ideal inB(XA). Note that if〈·, ·〉A is a non-degenerateA-valued
inner product, thenB(XA) is also a∗-algebra and in this caseF(XA) is actually a two-sided
∗-ideal ofB(XA). The relevance ofF(XA) for formal Morita equivalence is illustrated by
the following proposition.

Proposition 6.1. SupposeBXA is a (B-A)-equivalence bimodule and thatB has an ap-
proximate identity. ThenB ∼= F(XA) via LB.

Proof. We know thatLB(B) ⊆ B(XA) and thatLB : B→ B(XA) is a∗-homomorphism
such thatLB(B∗) is an adjoint ofLB(B). Note thatLB(B〈x, y〉)(z) = 〈x, y〉B · z = x ·
〈y, z〉A = Θx,y(z) and henceF(XA) ⊂ LB(B). But sinceB〈·, ·〉 is full, it then follows that
LB(B) = F(XA). It is also easy to check thatLB : B → F(XA) is a ∗-homomorphism.
Finally, injectivity of LB follows from Lemma 5.15. �

We also observe that the proof of Proposition 6.1 only assumed that the bimoduleBXA
satisfies (E1)–(E3) (not necessarily (E4)). Note that if we consider the bimoduleF(XA)XA,
with F(XA)-valued inner product given by

F(XA)〈x, y〉 = LB(B〈x, y〉) = Θx,y,
thenBXA ∼=F(XA) XA as equivalence bimodules. So, given a∗-algebraA, a natural way to
search for∗-algebras (formally) Morita equivalent to it is by considering rightA-modules
XA endowed with a full positive semi-definiteA-valued inner product, and computing the
corresponding∗-algebrasF(XA). The difficulty is showing that the formula

F(XA)〈x, y〉 = Θx,y (6.4)

is such thatΘx,x ∈ F(XA)+ in general. But if one manages to do that, then we have the
following proposition.
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Proposition 6.2. LetXA be a rightA-module with a full positive semi-definiteA-valued
inner product. IfΘx,x ∈ F(XA)+ ∀x ∈ XA, thenF(XA)KA defines a(F(XA)-A)-bimodule
satisfying(E1)–(E3).

Proof. It is clear thatF(XA)〈·, ·〉 as defined in (6.4) satisfies (Y1). Note thatΘ∗x,y = Θy,x
implies (Y2) and sinceTΘx,y = ΘTx,y for all T ∈ B(XA), (Y3) also holds. By our
hypothesisΘx,x ≥ 0 and fullness is immediate from the definition ofF(XA). So (E1) and
(E2) hold. Finally, the compatibility condition (E3) is also easy to be checked. �

Property (E4) does not seem to hold in such a general setting. It will also be useful to
observe the following proposition.

Proposition 6.3. LetXA be as in Proposition6.2and supposeA = C. Then we automati-
cally haveΘx,x ∈ F(XA)+ (and hence the conclusion of Proposition6.2holds). Note also
that ifA = C = Ĉ is a field, thenΘx,x ∈ F(XA)++.

Proof. Just note that given anyy ∈ XA such that〈y, y〉A 6= 0 (and one can always find such
ay), then we can write〈y, y〉AΘx,x = Θx,yΘy,x ∈ F(XA)++. But since〈y, y〉A ∈ C+, it

follows thatΘx,x ∈ F(XA)+. If A = C = Ĉ is a field, then the last claim in the proposition
follows from the invertibility of〈y, y〉A. �
More generally, we have the following useful results

Proposition 6.4. Let XA be as in Proposition6.2. Suppose that for anyx ∈ XA, there
existsyi ∈ XA, i = 1, . . . , n such thatx · (∑i〈yi, yi〉A) = x. ThenΘx,x ∈ F(XA)++. In
particular, it follows from Proposition6.2that in this caseF(XA)XA is a bimodule satisfying
(E1)–(E3).

Proof. Just note that
∑
iΘx,yiΘ

∗
x,yi
=∑iΘx,yiΘyi ,x = Θx·∑i 〈yi ,yi 〉A,x = Θx,x . �

Corollary 6.5. If A is unital and if we can write1=∑i〈yi, yi〉A for someyi ∈ XA, then

F(XA)XA is a bimodule satisfying(E1)–(E3)and(Y4a).

Remark 6.6. Let us remark that in the case ofC∗-algebras,Θx,x is always positive. This
follows from the fact that there is a very nice characterization of the positive “compact”
operators on a right HilbertA-moduleXA, namelyK(XA)+ = {T ∈ K(XA)|〈Tx, x〉A ≥
0 ∀x ∈ XA} and a simple computation shows that elements of the formΘx,x belong to this
set. See[64, Section2.2].

We will now use some of the previous ideas to discuss examples of formally Morita
equivalent∗-algebras.

SupposeΛ is any set and consider the freeC-moduleC(Λ) = ⊕i∈ΛC, regarded as a right
C-module with fullC-valued inner product given by

〈v,w〉C :=
∑
i

viwi. (6.5)



338 H. Bursztyn, S. Waldmann / Journal of Geometry and Physics 37 (2001) 307–364

Let {ei}i∈Λ be the canonical basis ofC(Λ), which is orthonormal with respect to the inner
product just defined. We defineF(C(Λ)) as in (6.3) and observe thatF(C(Λ)) is unital
if and only if Λ is a finite set. However, note thatF(C(Λ)) always has an approximate
identity. Indeed, letF be the set of all finite subsets ofΛ, with the natural partial ordering
by inclusion. Then for eachJ ∈ F , we defineEJ =

∑
j∈JΘej ,ej and one can check

that {EJ }J∈F is an approximate identity ofF(C(Λ)) (with corresponding filtration given
by F(C(Λ)) = ⋃J∈FC-span{Θei,ej |i, j ∈ J }). Also note that Proposition 2.8 implies that
F(C(Λ)) has sufficiently many positive linear functionals.

Observe that for anyi ∈ Λ, we have〈ei, ei〉 = 1 and therefore by Corollary 6.5, it follows
thatC(Λ) is a (F(C(Λ))-C) bimodule satisfying (E1)–(E3) and also (X4a′) and (Y4a′). Also
observe thatC(Λ) ∼= ⊕iCei and it is easy to check that (P1)–(P3) hold. Finally, note that
theF(C(Λ))-action onC(Λ) is cyclic since, if we fixei , for somei ∈ Λ, then anyv ∈ C(Λ)

can be written asv = Θv,ei ei and henceei is a cyclic vector. So (Q1)–(Q3) hold andC(Λ)

is a (F(C(Λ))-C)-equivalence bimodule.
If Λ is a finite set, say withn elements, thenC(Λ) = Cn andF(Cn) = B(Cn) = Mn(C).

So it follows thatC andMn(C) are formally Morita equivalent. We will summarize the
discussion with the following proposition.

Proposition 6.7. The free moduleC(Λ) = ⊕i∈ΛC has a natural(F(C(Λ))-C)-equivalence
bimodule structure. SoF(C(Λ)) andC are formally Morita equivalent. In particular, C and
Mn(C) are formally Morita equivalent for all positive integers n.

Let us now discuss the situation where, instead ofC(Λ), we have an arbitrary pre-Hilbert
space overC, denoted byH (we remark that pre-Hilbert spaces do not have orthonormal
bases in general, see [21] for an example, where in fact the pre-Hilbert space is even a
Hilbert space over an algebraically closed field). Let us suppose in addition thatC = Ĉ =
R̂(i) is actually a field (and̂R is an ordered field). We can regardH as a rightĈ-module
with full positive definiteĈ-valued inner product (fullness is guaranteed by the fact that
Ĉ is a field). Then, by Propositions 6.2 and 6.3, it follows thatH is a (F(H)-Ĉ)-bimodule
satisfying (E1)–(E3) as well as (Y4a′). Here again, Proposition 2.8 implies thatF(H) has
sufficiently many positive linear functionals. One can check thatF(H) acts onH in a cyclic
way, and in fact any non-zero vectorv ∈ H is a cyclic vector for this action. Indeed, fix
v ∈ H, v 6= 0 and pick anyw ∈ H. Then the operatorT = Θw,v/〈v, v〉 ∈ F(H) is
such thatTv = w. So (Q1)–(Q3) hold. Finally, property (P) follows from the even more
general fact that the tensor product of two pre-Hilbert spaces overC (not necessarily a
field) is well defined (see Corollary A.7 in Appendix A). We can then state the following
proposition.

Proposition 6.8. If Ĉ = R̂(i), whereR̂ is an ordered field, then̂C is formally Morita
equivalent toF(H), whereH is any pre-Hilbert space over̂C.

It is interesting to note that this is a “formal” analogue of the classical result inC∗-algebras
that asserts that the algebra of compact operators on any Hilbert space is Morita equivalent
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to C (see [64, Section 3.1]). In fact, Proposition 6.8 implies that the algebra of finite rank
operators on any Hilbert space is formally Morita equivalent toC.

We will now generalize Proposition 6.7 by replacingC by an arbitrary∗-algebra overC
(with an approximate identity). But first, we need to discuss tensor products of equivalence
bimodules. LetA1,A2,B1 andB2 be∗-algebras. Then it is not hard to see that the analogue of
Proposition 4.5 forB1 andB2 valued inner products satisfying the corresponding conditions
(Y) and (Q) also holds.

Proposition 6.9. Let B1XA1 andB2XA2 be equivalence bimodules satisfying(P1)–(P3)
and (Q1)–(Q3)as well as(X4a) and (Y4a). Let A = A1 ⊗ A2, B = B1 ⊗ B2 and

BXA =B1XA1⊗B2XA2. ThenBXA is an equivalence bimodule also satisfying(P1)–(P3),
(Q1)–(Q3), (X4a)and(Y4a).

Proof. By Proposition 4.5 and the remark above, everything is shown except for (E3). But
this follows from an easy computation. �

Let nowA be a∗-algebra overC with an approximate identity. We know thatAAA is
an equivalence bimodule satisfying (P1)–(P3), (Q1)–(Q3), (X4a) and (Y4a). It was shown
earlier in this section thatF(C(Λ))C

(Λ)c is an equivalence bimodule also satisfying (P1)–(P3),
(Q1)–(Q3), (X4a) and (Y4a). We will consider now the(F(C(Λ)) ⊗ A-C ⊗ A) bimodule
given byF(C(Λ))C

(Λ)c⊗AAA. Note thatF(C(Λ)) ⊗ A ∼= F(A(Λ)) andC ⊗ A ∼= A, and
under this identification we can write

F(C(Λ))C
(Λ)c⊗ AAA ∼=F(A(Λ)) A

(Λ)

A ,

whereAΛ = ⊕i∈ΛA. By Proposition 6.9, it then follows thatF(A(Λ))A
(Λ)

A is an equiva-
lence bimodule satisfying (P1)–(P3), (Q1)–(Q3), (X4a) and (Y4a). Based on the previous
discussion, we can then state the following proposition.

Proposition 6.10. LetA be a∗-algebra overC, with an approximate identity. ThenA and
F(A(Λ)) are formally Morita equivalent. In particular,A andMn(A) are formally Morita
equivalent for all positive integers n.

We shall now describe a more general construction of formally Morita equivalent
∗-algebras. This construction will enable us to recover the results on Propositions 6.7 and
6.10 and will also lead to some important generalizations.

LetA be a∗-algebra overC with an approximate identity{Aα, Eα}α∈I , and letΛ be any
set. Consider again theA-right free moduleA(Λ) = ⊕i∈ΛA, endowed with theA-valued
inner product given by〈w, z〉 =∑iw

∗
i zi for z,w ∈ A(Λ). Observe that sinceA is assumed

to have an approximate identity, this inner product is full. Let us now consider the∗-algebra
F(A(Λ)). We remark thatF(A(Λ)) also has an approximate identity, defined as follows. If
we letF = {Finite subsets ofΛ}, then we can considerF partially ordered by inclusion
and thenF × I also has a natural partial order. Ifi ∈ Λ, α ∈ I , let ei,α ∈ A(Λ) be the
element withith componentEα and zero elsewhere. Then givenJ ∈ F andα ∈ I , we set
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EJ,α =
∑
i∈JΘei,α,ei,α and check that{EJ,α} is an approximate identity (with corresponding

filtration given by
⋃
(J,α)C-span{Θx,y |xi = yi = 0 if i /∈ J, xi, yi ∈ Aα}).

LetQ ∈ B(A(Λ)) be a projection, i.e.Q = Q∗ = Q2. Moreover, assume thatQ satisfies

C-span{AQB|A,B ∈ F(A(Λ))} = F(A(Λ)). (6.6)

Such a projection is calledfull. Note thatQF(A(Λ))Q ⊆ F(A(Λ)) is a∗-subalgebra, since
F(A(Λ)) is a two-sided ideal ofB(A(Λ)). We will now investigate whenF(A(Λ)) and
QF(A(Λ))Q are formally Morita equivalent.

Let X = F(A(Λ))Q. ThenX has a natural(F(A(Λ))-QF(A(Λ))Q)-bimodule structure,
with respect to left and right multiplication. We can defineF(A(Λ))- andQF(A(Λ))Q-valued
inner products onX by

F(A(Λ))〈AQ,BQ〉 = AQQ∗B∗ = AQB∗, A, B ∈ F(A(Λ)), (6.7)

which is full sinceQ is a full projection, and

〈AQ,BQ〉QF(A(Λ))Q = Q∗A∗BQ= QA∗BQ, A, B ∈ F(A(Λ)), (6.8)

which is also full, since elements of the formA∗B spanF(A(Λ)) (since it has an approximate
identity). Also note that these inner products satisfy (X4a) and (Y4a). It is easy to check that
the inner products are compatible (as in (E3)) and thatF(A(Λ)) acts onX in a pseudo-cyclic
way (with pseudo-cyclic vectors{EJ,αQ} for {EJ,α} the approximate identity ofF(A(Λ))).
So properties (Q1)–(Q3) are satisfied. We shall now discuss situations where (P) also holds
andF(A(Λ))XQF(A(Λ))Q is an equivalence bimodule. To this end, let us fixj ∈ Λ and define

F
(j)
α = {Θej,α,v|v ∈ A(Λ)} andF(j) =⋃α∈IF

(j)
α . Then we can writeF(A(Λ)) = ⊕i∈ΛF(i)

and hence

X = F(A(Λ))Q = ⊕
i∈Λ
F(i)Q. (6.9)

Note thatF(i)Q ⊆ F(i) andF(i)Q ⊥ F(j)Q for i 6= j with respect to〈·, ·〉QF(A(Λ))Q.
Moreover, this decomposition is preserved by the right action ofQF(A(Λ))Q onX. Let
us now consider the action ofQF(A(Λ))Q on F(i)Q, for a fixedi ∈ Λ. We observe the
following lemma, which is an easy computation.

Lemma 6.11. For all z,w, v ∈ A(Λ), we have

Θw,zQ(QΘz,vQ) = Θw〈Qz,Qz〉,vQ. (6.10)

Suppose that for eachα ∈ I , we can findzα ∈ A(Λ) andAα ∈ A such thatEαAα〈Qzα,Qzα〉
= Eα. In the case whereA is unital, this is satisfied by anyz such that〈Qz,Qz〉 ∈ A is
invertible. Under this assumption, it easily follows from Lemma 6.11 that the action of
QF(A(Λ))Q on F(i)Q is pseudo-cyclic, with pseudo-cyclic vectorsΩ(i)

α = Θei,αAα,zαQ

and thus (P1)–(P3) (and therefore (P)) are fulfilled. We remark that ifA is unital and we
find z ∈ A(Λ) with 〈Qz,Qz〉 invertible, then the action ofQF(A(Λ))Q onF(i)Q is actually
cyclic, with cyclic vectorΩ(i) = Θei 〈Qz,Qz〉−1,zQ. We summarize the discussion with the
following proposition.
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Proposition 6.12. LetA be a∗-algebra with an approximate identity{Eα}α∈I . LetQ ∈
B(A(Λ)) be a full projection such that for allα ∈ I , we can findzα ∈ A(Λ) andAα ∈ A
satisfyingEαAα〈Qzα,Qzα〉 = Eα. ThenF(A(Λ)) andQF(A(Λ))Q are formally Morita
equivalent. IfA is unital, it suffices to findz ∈ A(Λ) such that〈Qz,Qz〉 ∈ A is invertible
and the same conclusion holds.

We observe that Proposition 6.12 provides many examples of formally Morita equiv-
alent ∗-algebras. For instance, leti ∈ Λ and letQ ∈ B(A(Λ)) be the projection onto
the ith coordinate. ThenQ is full and for anyα ∈ I , we can choosezα = ei,β for
someβ > α. Then we haveEαEβ〈Qzα,Qzα〉 = Eα. Note thatQF(A(Λ))Q ∼= A and
hence, by Proposition 6.12, it follows thatA andF(A(Λ)) are formally Morita equiv-
alent. Thus Proposition 6.10 follows from Proposition 6.12. Note also that ifQ,P ∈
B(A(Λ)) are full projections so thatQF(A(Λ))Q andF(A(Λ)) are formally Morita equiv-
alent, the same holding for the pairPF(A(Λ))P andF(A(Λ)), then sinceF(A(Λ)) acts
on F(A(Λ))Q andF(A(Λ))P in a pseudo-cyclic way, we can apply Proposition 5.6 and
conclude thatQF(A(Λ))Q andPF(A(Λ))P are formally Morita equivalent. We will dis-
cuss this matter a little further in the end of this section. We now observe that algebras
defined by star products on Poisson manifolds,C∞(M)[[λ]], have the additional property
that any element of the form 1+ A∗A is invertible. In this case, we have the following
corollary.

Corollary 6.13. SupposeA is unital and has the property that1+ A∗A is invertible for
all A ∈ A. If Q = (Qij ) ∈ Mn(A) is a full projection such thatQij is invertible inA for
somei, j , then the conclusion of Proposition6.12holds.

We will now concentrate our discussion in the special situationA = C. In this case,
even if 〈Qz,Qz〉 is not invertible, we can always choosez so that〈Qz,Qz〉 ∈ R+ (for
Q is full). Then one can still use Lemma 6.11 to show that this is sufficient to guarantee
(P) (by an argument similar to the proof of Lemma 3.1). Finally, observe that any projec-
tion of the formQ = ∑k

j=1Θeij ,eij
is full. In particular, ifQ = Θei,ei for some fixed

i ∈ Λ, thenF(C(Λ))Q ∼= C(Λ) andQF(C(Λ))Q ∼= C. So this example recovers the re-
sult in Proposition 6.7. Note that since the (left) action ofF(C(Λ)) onF(C(Λ))Q satisfies
(Q1)–(Q3) for any full projectionQ ∈ B(C(Λ)), it then follows that ifQ,P ∈ B(C) are
full projections, then one can apply Proposition 5.6 and conclude thatF(C(Λ))Q⊗F(C(Λ))
F(C(Λ))P is a (QF(C(Λ))Q-PF(C(Λ))P )-equivalence bimodule. Observe thatQF(C(Λ))P
is a (QF(C(Λ))Q-PF(C(Λ))P )-bimodule with respect to left and right multiplications, and
we can also endow it withQF(C(Λ))Q andPF(C(Λ))P valued inner products in a natu-
ral way ((QAP,QBP) 7→ QAPB∗Q, (QAP,QBP) 7→ PA∗QBP, respectively) and an easy
computation shows that, in fact,F(C(Λ))Q ⊗F(C(Λ)) F(C(Λ))P ∼= QF(C(Λ))P . Hence
QF(C(Λ))P is a (QF(C(Λ))Q-PF(C(Λ))P )-equivalence bimodule. In particular, ifP =
Θei,ei , for somei ∈ Λ, thenPF(C(Λ))P ∼= C and thereforeC andQF(C(Λ))Q are formally
Morita equivalent for all full projectionsQ ∈ B(C(Λ)). We will summarize the discussion
in the following proposition.
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Proposition 6.14. LetQ ∈ B(C(Λ)) be a full projection. ThenF(C(Λ)) andQF(C(Λ))Q
are formally Morita equivalent. Furthermore, ifP ∈ B(C(Λ)) is another full projection,
then it follows thatPF(C(Λ))P andQF(C(Λ))Q are also formally Morita equivalent, with
equivalence bimodule given byPF(C(Λ))Q, and moreover this bimodule satisfies(X4a′),
(Y4a′) and it is non-degenerate.

As in the theory ofC∗-algebras, we will call the∗-algebras of the formQF(C(Λ))Q full
cornersof F(C(Λ)). Proposition 6.14 then states that any two full corners ofF(C(Λ)) are
formally Morita equivalent.

We end this section with a few remarks about the construction of pairs of Morita equivalent
algebras out of full projections, as illustrated in Proposition 6.14. ForC∗-algebras, it is
known that, in fact,all pairs of Morita equivalent algebras arise as complementary full
corners of the corresponding linking algebra (see [64, Section 3.2]). The same construction
actually holds for unital∗-algebras overC but the extension of these ideas to non-unital
situations depends on a further development of the concept of multiplier algebra in this
context. The discussion of this matter will await another time.

7. Formal versus ring-theoretic Morita equivalence

Recall that we have shown in Proposition 5.4 that two isomorphic∗-algebras are also
(formally) Morita equivalent. This section will be devoted to showing that the converse is
also true for commutative and unital∗-algebras. To this end, we will explore the relationship
between the notion of formal Morita equivalence and the more standard notion of Morita
equivalence for unital algebras. Let us start recalling some basic notions of Morita theory
for (arbitrary) unital algebras (over some fixed unital commutative ring). See [7,50] for
further details.

We say that two unital algebrasA andB over a ringS areMorita equivalentif they have
equivalent categories of left modules. Aset of equivalence data(A,B,P,Q, f, g) (see [7,
62 pp.]) consists of unitalS-algebrasA andB, bimodulesAPB andBQA and bimodule
isomorphismsf : P ⊗B Q→ A andg : Q⊗A P → B satisfying:

1. f (p ⊗ q)p′ = pg(q ⊗ p′),
2. g(q ⊗ p)q ′ = qf(p ⊗ q ′).
A set of equivalence data is also called aMorita context.

Remark 7.1. It can be shown(see[7, 62 pp.])that if f and g are surjective homomorphisms
satisfying the two conditions above, then they are actually isomorphisms.

The main theorem of Morita theory for unital algebras asserts thatA andB are Morita
equivalent if and only if there exists a set of equivalence data(A,B,P,Q, f, g) as above.
Moreover, if such a set of equivalence data exists, then one can actually show (see [7,
pp. 62–65]) thatP andQ are finitely generated projective modules with respect toA andB.
Also P ∼= HomA(Q, A) ∼= HomB(Q, B) as (A-B)-bimodules andQ ∼= HomB(P, B) ∼=
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HomA(P, A)as (B-A)-bimodules. Moreover,A ∼= EndB(P),B ∼= EndA(Q)andcenter(A)
∼= End(APB) ∼= End(BQA) ∼= center(B). The isomorphismφ : center(A) → center(B)
is given as follows. For eacha ∈ center(A), we defineφ(a) as the uniqueb ∈ center(B)
such that:

ap= pb∀p ∈ P.
We also have the following characterization of Morita equivalence for unital algebras (see
[50, Proposition 18.33]): two unitalS-algebrasA andB are Morita equivalent if and only
if A ∼= eMn(B)e for some full idempotente ∈ Mn(B). We recall thate ∈ Mn(B) is a full
idempotent ife2 = e and theS-span ofBeBisB (see (6.6)).

We will now show how Morita theory for unital algebras is related to formal Morita
equivalence.

Proposition 7.2. LetA andB be unital∗-algebras overC and supposeBXA is a bimod-
ule satisfying(X1)–(X3), (X5), (X6) as well as(Y1)–(Y3), (Y5), (Y6) and (E3). Then
(A,B,AXB,B XA, f, g) is a set of equivalence data, where

f : AXB ⊗B BXA→ A, x̄ ⊗ y 7→ 〈x, y〉A,
g : BXA ⊗A AXB → B, x ⊗ ȳ 7→B 〈x, y〉.

In particular,A andB are Morita equivalent as unital algebras.

Proof. Note that conditions (1) and (2) in the definition of a set of equivalence data hold
by the compatibility condition (E3). So it remains to show thatf and g are bimodule
isomorphisms (it is clear that they are homomorphisms). Observe that sinceB〈·, ·〉 and
〈·, ·〉A are full, it follows thatf andg are surjective. The conclusion then follows from
Remark 7.1. �

We remark that we did not need the positivity conditions (X4), (Y4), (P) and (Q) for this
proposition. We have the following immediate corollary.

Corollary 7.3. If A andB are unital∗-algebras overC which are formally Morita equi-
valent, then they are also Morita equivalent as unitalC-algebras.

Corollary 7.4. It follows from the discussion after Remark7.1 that if BXA is a (B-A)-
bimodule as in Proposition7.2 (in particular, if BXA is an equivalence bimodule), then

1. B ∼= F(XA) ∼= EndA(BXA),
2. A ∼= F(XB) ∼= EndB(AXB),
3. center(A) ∼= center(B) ∼= End(BXA) asC-algebras,
4. There exists a full idempotente ∈ Mn(B) such thatA ∼= eMn(B)e.

Note that ifA is a∗-algebra thencenter(A) is also a∗-algebra. We will now show that
if A andB are unital∗-algebras such that there exists a bimoduleBXA as in Proposition
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7.2, thencenter(A) ∼= center(B) as∗-algebras. As we saw, there is an algebra isomorphism
φ : center(A) → center(B) defined by the conditionxRA(A) = LB(φ(A))x ∀x ∈BXA.
But observe that ifT = LB(B) = RA(A) ∈ End(BXA) (that is,T is left B-linear and
right A-linear), we can define two adjoints forT : T ∗A = RA(A∗), which satisfies

B〈Tx, y〉 =B〈x, T ∗Ay〉 for all x, y ∈BXA or T ∗B = LB(B∗), which similarly satisfies
〈Tx, y〉A = 〈x, T ∗B y〉A for all x, y ∈BXA.

Lemma 7.5. Let BXA be a(B-A)-bimodule satisfying(X1)–(X3), (X5), (X6) as well as
(Y1)–(Y3), (Y5), (Y6)and(E3).Then ifT ∈ End(BXA), we haveT ∗A = T ∗B .

Proof. SupposeA ∈ center(A). ThenA∗ ∈ center(A) and hence we can considerB ′ =
φ(A∗) such thatRA(A∗) = LB(B ′). So it follows thatB〈Tx, y〉 =B〈LB(B)x, y〉 =
B B〈x, y〉. But we also have that

B〈Tx, y〉 = B〈xRA(A), y〉 = B〈x, yRA(A∗)〉 = B〈x,LB(B ′)y〉 = B〈x, y〉(B ′)∗.

Hence, sinceB,B ′ ∈ center(B), we conclude thatB B〈x, y〉 = (B ′)∗ B〈x, y〉. But since
B is unital andB〈·, ·〉 is full, it follows that B = (B ′)∗, or B∗ = B ′. In other words,
φ(A∗) = B∗ ∀A ∈ A. �

We then have the following immediate consequence.

Proposition 7.6. LetA andB be unital∗-algebras such that there exists a bimoduleBXA
as in Lemma7.5.Then center(A) and center(B) are ∗-isomorphic.

Corollary 7.7. If A and B are commutative unital∗-algebras such that there exists a
bimoduleBXA as in Lemma7.5,then they are∗-isomorphic.

Let us remark that similar (and even non-unital) results have recently been obtained by
Ara in [5] (see note at the end of Section 10). For later use, we also observe the following
corollary.

Corollary 7.8. LetM,N be smooth manifolds and suppose there exists a(C∞(M)-C∞(N))-
bimodule as in Lemma7.5 (C-valued functions). Then M and N are diffeomorphic.

Proof. By the previous proposition,C∞(M) andC∞(N) are∗-isomorphic. So the algebras
C∞(M)R andC∞(N)R are also isomorphic and henceM andN are diffeomorphic (see
[12,74, Section 1.3.7]). �

We will now make some remarks concerning some of the previous results. First, it is
immediate to conclude that unital∗-algebras which are formally Morita equivalent have
∗-isomorphic centers, and hence if they are commutative, they must be∗-isomorphic.

Note that Proposition 7.6 does not hold if we do not assume that bothA andB are
unital. Indeed, let us recall that, as we saw in the previous section,C andF(C(Λ)) are
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formally Morita equivalent and ifΛ is not a finite set, thenF(C(Λ)) is not unital. It is easy
to check that, in this case, the center ofF(C(Λ)) is zero whereas the center ofC is C itself.
However, generalizations of Proposition 7.6 and Corollary 7.7 to non-unital∗-algebras (with
approximate identities) are still possible (see [5, Theorem 4.2] and the note added at the
end of Section 10).

Let us also remark that, unlike the case ofC∗algebras (see [10, Section 1.8] and [4]
for generalizations to the non-unital case), the converse of Corollary 7.3 does not hold for
general∗-algebras overC. To see that, let us start with a brief discussion about the algebra
of smooth complex-valued functions on a compact real manifold. We recall that any algebra
isomorphismΦ : C∞(M) → C∞(M) is the lift of a diffeomorphismφ : M → M (i.e.,
Φ = φ∗) (the proof of this result for real-valued functions on arbitrary manifolds, as found
in [74, Section 1.3.7], also works for complex-valued functions on compact manifolds). We
then have the following proposition.

Proposition 7.9. Let M be a compact smooth manifold and letC∞(M) denote the complex
algebra of complex-valued smooth functions on M. SupposeΦ : C∞(M)→ C∞(M) is an
algebra isomorphism. ThenΦ must preserve conjugation:Φ(f̄ ) = Φ(f )∀f ∈ C∞(M).

Corollary 7.10. Suppose∗ is an involution onC∞(M).Then(C∞(M),∗ )and(C∞(M),− )
are isomorphic as∗-algebras if and only if∗ is the complex conjugation.

Suppose now thatM is a compact real manifold admitting a non-trivial geometric in-
volution (that is, a diffeomorphismψ such thatψ2 = id, ψ 6= id). Then we can define
a ∗-involution onC∞(M) by settingf ∗ = (f ◦ ψ) = f ◦ ψ . Then, by Corollary 7.10
(C∞(M),∗ ) and(C∞(M),− ) are not∗-isomorphic (and hence not formally Morita equi-
valent by Corollary 7.7). But sinceC∞(M) is Morita equivalent to itself as a unital com-
plex algebra, it follows that the converse of Corollary 7.3 does not hold. Nevertheless, in
some particular situations, something can be said about the converse of Corollary 7.3. We
illustrate this fact with the following proposition.

Proposition 7.11. LetC = R(i) be such that1+ xx is always invertible inC. SupposeA
is a unitalC-algebra Morita equivalent toC. Then there exists an involution∗ in A such
thatC and(A,∗ ) are formally Morita equivalent.

Proof. If C andA are Morita equivalent, then as discussed before, there exists a full
idempotente ∈ Mn(C) (not necessarily self-adjoint) so thatA ∼= eMn(C)e. Then it follows
from [46, Theorem 26] that there exists a projectionQ ∈ Mn(C) (that is,Q = Q∗ = Q2)
such that

QMn(C) = eMn(C),

and it is then easy to check thatQ is full, for so ise. Moreover, it follows from [46, Theorem
15] that

QMn(C)Q ∼= eMn(C)e,
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and henceA is isomorphic toQMn(C)Q as aC-algebra. But sinceQMn(C)Q has a natural
involution inherited fromMn(C) (as a∗-subalgebra), we can define an induced∗-involution
onA, so thatA andQMn(C)Q are∗-isomorphic. But now it follows from Proposition 6.14
thatA ∼= QMn(C)Q andC are formally Morita equivalent. �

The hypothesis about 1+ xx being invertible is needed for [46, Theorem 26]. Whenever
C = R(i)andR is an ordered field, this is satisfied. This condition also holds forC = C[[λ]].
For an arbitrary unital∗-algebraA overC, with the additional requirement that 1+A∗A is
invertible for allA ∈ A, one can show by the same argument as in the proof of Proposition
7.11 that ifB is another unitalC-algebra Morita equivalent toA, then we can define an
involution onB so that there exists a (B-A)-bimodule satisfying (E1)–(E3).

8. Deformations of∗∗∗-algebras and classical limit of∗∗∗-representations

In order to make the general notion of algebraic Rieffel induction and formal Morita
equivalence of∗-algebras over ordered rings available for more concrete physical situations
like deformation quantization we shall now investigate deformations of∗-algebras and their
bimodules.

Before we discuss some basic definitions and notations on∗-algebra deformations, we
recall that for an ordered ringR the corresponding ring of formal power seriesR[[λ]] is
again ordered in a canonical way as we have seen forR[[λ]] in Section 2: a formal power
seriesa = ∑∞r=r0λrar ∈ R[[λ]] is defined to be positive ifar0 > 0. In the following we
shall always use this ring ordering ofR[[λ]]. Moreover, we define the classical limit map
C : R[[λ]] → R by taking the order zero part, i.e.C : a 7→ a0, and useC similar forC[[λ]].
ThenC is a homomorphism of ordered rings.

Now letA be a∗-algebra overC. ThenA[[λ]] is a C[[λ]]-module and extending the
productC[[λ]]-bilinearly and the∗-involution C[[λ]]-antilinearly toA[[λ]] we obtain a
∗-algebra structure forA[[λ]] viewed as an algebra overC[[λ]]. We shall refer to this
∗-algebra structure as ‘classical’ and denote the product sometimes byµ0(A,B) := AB
and the∗-involution by I0(A) := A∗. Then aformal associative deformationµ of µ0

in the sense of Gerstenhaber [42] is a formal seriesµ = ∑∞
r=0λ

rµr of bilinear maps
such that(A[[λ]] , µ) becomes an associativeC[[λ]]-algebra. A ∗-algebra deformation
(µ, I ) of A is a formal associative deformationµ of A together with a formal seriesI =∑∞
r=0λ

rIr of antilinear mapsIr : A→ A such thatI is a∗-involution for the productµ, i.e.
(A[[λ]] , µ, I ) becomes a∗-algebra overC[[λ]] such that theclassical limitsof the product
µ and the∗-involutionI coincide with the original productµ0 and the original∗-involution
I0, respectively, see [23] for a further discussion. We shall sometimes denote the deformed
product byA ? B = µ(A,B) and the deformed involution byA∗∗∗ = I (A), and denote the
classical limits again byCµ = µ0 andCI = I0. ThenC : A[[λ]] → A becomes aC-linear
∗-homomorphism.

We shall now examine the deformed∗-algebra structure more closely. First we recall the
well-known fact that ifV,W areC-modules andΦΦΦ : V [[λ]] → W [[λ]] is a C[[λ]]-linear
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map thenΦΦΦ is actually of the formΦΦΦ =∑∞r=0λ
rΦΦΦr withΦΦΦr : V → W beingC-linear maps,

and an analogous statement holds for multilinear maps as well, see, e.g., [33, Proposition
2.1]. In this case we shall callΦ = ΦΦΦ0 = CΦΦΦ again the classical limit ofΦΦΦ. Thus let a
∗-algebra deformation(µ, I ) ofA be given and consider a positiveC[[λ]]-linear functional
ω : A[[λ]] → C[[λ]] which can thus be written asω =∑∞r=0λ

rωr with C-linear functionals
ωr : A→ C. Fromω(A∗∗∗ ? A) ≥ 0 and the definition of the ordering ofR[[λ]] it follows
immediately that theclassical limitω0 = Cω of ω is a positiveC-linear functional of the
classical∗-algebraA, see also [21, Lemma 6] for a formulation in the context of deformation
quantization. This raises the question of whether every classically positive linear functional
ω0 is automatically positive for the deformed∗-algebra. A simple example shows that in
general this isnot the case [21, Section 2] and thus one is led to the refined question
of whether one candeforma classically positiveC-linear functionalω0 into a positive
C[[λ]]-linear functionalω of the deformed∗-algebra by adding appropriate higher order
terms, i.e.ω =∑∞r=0λ

rωr . If this is possible forall classically positive linear functionals
then we shall call the∗-algebra deformation(µ, I ) apositive deformationofA. It turns out
that many interesting examples and in particular all Hermitian star products on symplectic
manifolds have this property [23, Proposition 5.1]. Moreover, the important property of
having sufficiently many positive linear functionals is preserved under positive deformations
[23, Proposition 4.2].

Let us recall the definition of theλ-adic order and theλ-adic absolute value: letV be a
C-module and considerv =∑∞r=0λ

rvr ∈ V [[λ]]. Then the order ofv is defined by o(v) =
min{r|vr 6= 0}, where we set o(0) = +∞, and the absolute value ofv is defined byϕ(v) =
2−o(v). Thend(v,w) = ϕ(v − w) defines an ultra-metric forv,w ∈ V [[λ]] and V [[λ]]
is a complete metric space. The corresponding topology is called theλ-adic topology and
clearlyV [[λ]] is a topological module over the topological ringC[[λ]], see, e.g., [21,75] for
a more extensive treatment of theλ-adic and related topologies. The way we shall use these
topological aspects of formal power series is that we may use some less restrictive axioms
by replacing various ‘fullness conditions’ by their ‘dense’ analogues. Then the automatic
continuity ofC[[λ]]-linear maps (see above) ensures that the corresponding constructions
still work. In particular we shall need the following definition of atopological approximate
identity: Let AAAα ⊆ AAAβ for α ≤ β ∈ I be a system of directedC[[λ]]-submodules of
AAA = A[[λ]] such that

⋃
α∈IAAAα is densein AAA and letEEEα ∈ AAA be elements such that

EEEα ? EEEβ = EEEα = EEEβ ? EEEα for α < β,EEE∗∗∗α = EEEα, and for allA ∈ AAAα one hasEEEα ? A =
A = A ?EEEα. Then{AAAα,EEEα}α∈I is called a topological approximate identity. The classical
limit of a topological approximate identity yields an approximate identity.

Lemma 8.1. Let A be a ∗-algebra overC and let (AAA = A[[λ]] , µ, I ) be a ∗-algebra
deformation ofA admitting a topological approximate identity{AAAα,EEEα}α∈I . Then the
classical limitAα := C(AAAα) =AAAα ∩A andEα := C(EEEα) defines an approximate identity
{Aα, Eα}α∈I ofA. In particular, ifAAAhas a unit then the classical limitC111= 1 is a unit forA.

Proof. It is clear that{Aα}α∈I defines a directed filtered system of submodules ofA. Now
let A ∈ A be given then we find a sequenceAn ∈

⋃
αAAAα converging toA in theλ-adic
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topology. ButAn =
∑∞
r=0λ

rA
(r)
n can only converge toA if there exists aN such that for

all n ≥ N we haveA(0)n = A. Since on the other handAn ∈AAAαn for someαn we conclude
A ∈ Aαn for n ≥ N whence

⋃
αAα = A is shown. It remains to show the defining

properties of theEα which is straightforward. �

Note that someAα might be trivial and someEα might be 0. Note also that star prod-
ucts (with bidifferential operators vanishing on the constants) provide an example, where
one also can ‘quantize’ an approximate identity, see [75]. LetM be a manifold and let
{On}n∈N be open subsets ofM such thatOcl

n ⊂ On+1, Ocl
n is compact, and

⋃
nOn =

M. Moreover, chooseχn ∈ C∞0 (M) such that suppχn ⊆ On+1 andχn|Ocl
n
= 1. Then

{C∞0 (On)[[λ]] , χn}n∈N is a topological approximate identity for any (local) star product
onM (for any Poisson structure) and the classical limit is{C∞0 (On), χn}. Note that ifM
is non-compact this is only a topological approximate identity since

⋃
nC
∞
0 (On)[[λ]] 6=

C∞0 (M)[[λ]]. Furthermore, we notice that a topological approximate identity is sufficient
for Proposition 2.8.

In order to discuss the classical limit of∗-representations and bimodules of deformed
∗-algebras we first have to consider the classical limit of pre-Hilbert spaces. LetHHH be a
pre-Hilbert space overC[[λ]] then we want to define its ‘classical limit’ in order to get a
pre-Hilbert space overC. The first guess might beHHH/λHHH but it turns out that this space is
sometimes still too big and does not necessarily allow for a reasonableC-valued Hermitian
product.

Lemma 8.2. LetHHHbe a pre-Hilbert space overC[[λ]]. Then{φ ∈ HHH|C〈φ, φ〉 = 0}coincides
with theC[[λ]]-submoduleHHHL := {φ ∈ HHH|C〈φ,ψ〉 = 0∀ψ ∈ HHH} and clearlyλHHH ⊆ HHHL.
Thus the quotientCHHH := HHH/HHHL is canonically a pre-Hilbert space overC with the Hermitian
product

〈Cφ,Cψ〉 := C(〈φ,ψ〉), (8.1)

whereC : HHH→ CHHH denotes the projection.

Proof. Let φ satisfyC〈φ, φ〉 = 0 andψ ∈ HHH. Then〈φ,ψ〉〈ψ, φ〉 ≤ 〈φ, φ〉〈ψ,ψ〉 shows
thatC(〈φ,ψ〉) = 0 since〈ψ,ψ〉 has non-negativeλ-adic order which proves the first part
since the other inclusion is trivial. The other statements are straightforward. �

We shall callH = CHHH theclassical limitofHHH. Observe also the useful formula

C(zφ + wψ) = C(z)C(φ)+ C(w)C(ψ) (8.2)

for z,w ∈ C[[λ]] and φ,ψ ∈ HHH. Since the higher powers ofλ act trivially on the
C[[λ]]-moduleCHHH it is reasonable to considerCHHH only asC-module. IfH is a pre-Hilbert
space overC thenHHH = H[[λ]] becomes a pre-Hilbert space overC[[λ]] by extending the
Hermitian productC[[λ]]-(anti)linearly. In this case clearlyCHHH ∼= H in a canonical way.
But note thatC is defined forall pre-Hilbert spaces overC[[λ]] which are not necessarily
of that form. Note also that it may happen thatCHHH = {0} even ifHHH 6= {0} (just rescale the
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Hermitian product byλ). Next we shall consider the morphisms of pre-Hilbert spaces and
their classical limit.

Lemma 8.3. LetHHH1,HHH2,HHH3 be pre-Hilbert spaces overC[[λ]] and letA,A′ ∈ B(HHH1,HHH2),
B ∈ B(HHH2,HHH3) andz,w ∈ C[[λ]].

1. A(HHH1L) ⊆ HHH2L whenceCA : CHHH1→ CHHH2 defined by

CA(Cφ) := C(Aφ) (8.3)

is well-defined andC-linear.
2. C(zA+ wA′) = C(z)C(A) + C(w)C(A′), CA ∈ B(CHHH1,CHHH2) with (CA)∗ = C(A∗),

andC(BA) = (CB)(CA).

Proof. Let φ ∈ HHH1L thenC〈Aφ,Aφ〉 = C〈A∗Aφ, φ〉 = 0 according to Lemma 8.2.
ThusAφ ∈ HHH2L and CA is a well-definedC-linear map. The second part is an easy
computation. �

In other words we obtain afunctorC from the category of pre-Hilbert spaces overC[[λ]]
into the category of pre-Hilbert spaces overC. Note that the fact thatR[[λ]] is ordered was
crucial for this construction ofC. We shall refer toC as theclassical limit functor.

Now we shall investigate the classical limit of∗-representations of deformed algebras.
LetA be a∗-algebra overC and let(AAA = A[[λ]] , µ, I ) be a∗-algebra deformation ofA.
For a∗-representation ofAAA we obtain the following lemma.

Lemma 8.4. Let (AAA, µ, I ) be a∗-algebra deformation of a∗-algebraA over C and let
πππ : AAA → B(HHH) be a∗-representation ofAAA on a pre-Hilbert spaceHHH over C[[λ]]. Then
π = Cπππ : A = CAAA→ B(CHHH)

(Cπππ(CA))Cφ := C(πππ(A)φ) (8.4)

defines a∗-representation ofA onCH.

Proof. The well-definedness is shown analogously to the last lemma and the
∗-representation properties are a straightforward computation. �

Let us now discuss how additional properties of a∗-representation as mentioned in Section
2 behave under the classical limit. First it is clear that even ifπππ is faithful thenCπππ need
not to be faithful at all. While it is not clear in general whether the classical limit of a
non-degenerate∗-representation is again non-degenerate, this is certainly true for strong
non-degeneracy: if for allφ ∈ HHH we findAi ∈ AAA andψi ∈ HHH such thatφ = ∑iπππ(Ai)ψi

thenCφ = ∑iCπππ(CAi)Cψi shows thatCπππ is strongly non-degenerate. Now assumeπππ is
pseudo-cyclic with filtration{HHHα}α∈I and pseudo-cyclic vectorsΩΩΩα. Then defineHα :=
CHHHα andΩα := CΩΩΩα. Then it is easy to check that{Hα}α∈I defines a filtration ofH =
CHHH andΩα are pseudo-cyclic vectors forπ = Cπππ . If πππ is compatible with the filtration
{HHHα}α∈I thenπ is compatible with the filtration{Hα}α∈I . Let us finally consider an isometric
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intertwinerTTT : HHH1 → HHH2 for two ∗-representationsπππ1 andπππ2 ofAAA. Then the mapT :=
CTTT : CHHH1 → CHHH2 defined byCTTT (Cφ) := C(TTT φ) is well-defined sinceTTT is isometric.
Moreover,T is linear, still isometric, and obviously an intertwiner forCπππ1 andCπππ2. If TTT is
even unitary thenT is also unitary with inverseT −1 = C(TTT −1). Adjointable intertwiners are
already covered by Lemma 8.3. We summarize these results in the following proposition.

Proposition 8.5. Let(AAA = A[[λ]] , µ, I ) be a∗-algebra deformation of a∗-algebraA over
C. Then taking the classical limit of∗-representations yields a functor

C : ∗-rep(AAA)→ ∗-rep(A), (8.5)

which maps strongly non-degenerate, filtered, and pseudo-cyclic∗-representations to strongly
non-degenerate, filtered, and pseudo-cyclic∗-representations, respectively.

Remark 8.6. Note that this functor is not of the type of those functors obtained by algebraic
Rieffel induction since here we consider a functor between categories of∗-representations
of ∗-algebras over different rings.

9. Classical limit and deformation of bimodules

With the set-up of the previous section, we now turn to the question of the classical limit
and deformation of bimodules. Let(AAA = A[[λ]] , µA, IA) and(BBB = B[[λ]] , µB, IB) be
∗-algebra deformations of∗-algebrasA andB over C. We consider aC[[λ]]-moduleXXX
which is equipped with a (BBB-AAA)-bimodule structure and aAAA-valued inner product, then the
first question is how to define the classical limit ofBBBXXXAAA. To this end we shall first discuss the
general case and specialize to more concrete cases afterwards. We use theAAA-valued inner
product to define the classical limit ofBBBXXXAAA similarly to the classical limit of pre-Hilbert
spaces. Consider theC[[λ]]-submodule

XXXL := {xxx ∈ BBBXXXAAA|∀yyy ∈ BBBXXXAAA : C〈xxx,yyy〉AAA = 0}. (9.1)

Then clearlyλBBBXXXAAA ⊆BBBXXXAAA. We are thus able to define theclassical limitof BBBXXXAAA as the
quotient

X = CBBBXXXAAA := BBBXXXAAA/XXXL, (9.2)

and denote byx = Cxxx ∈ X the equivalence class ofxxx ∈BBBXXXAAA. ThoughX is in principle a
C[[λ]]-module, all higher powers ofλ act trivially onX whence we regardX asC-module
only. We shall now prove that all relevant structures pass to the classical limit. First notice
that theBBB-left actionLLLBBB as well as theAAA-right actionRRRAAA pass to the quotient due to (X5)
and (X3), respectively. Moreover, it is clear they yield left and right actions of the classical
limits. Thus we can define a (B-A)-bimodule structure onX by setting

LB(B)(Cxxx) := C(LLLB(B)xxx) and (Cxxx)RA(A) := C(xRxRxRA(A)), (9.3)
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which gives indeed a well-defined (B-A)-bimodule structure onBXA := X. Next, one
checks that

〈Cxxx,Cyyy〉A := C(〈xxx,yyy〉AAA) (9.4)

defines anAAA-valued inner product, where the well-definedness follows directly from (9.1).
Note that〈·, ·〉A automatically satisfies the property that if〈Cxxx,Cyyy〉A = 0 for all Cyyy
thenCxxx = 0. Nevertheless note, as in Remark 5.17, that it is not necessarily true that
〈Cxxx,Cxxx〉A = 0 impliesCxxx = 0. Moreover, the various properties of〈·, ·〉A are inherited
by 〈·, ·〉A:

Lemma 9.1. If 〈·, ·〉A satisfies(X1)–(X3), (X4a),and(X5) then〈·, ·〉A satisfies(X1)–(X3),
(X4a),and(X5), respectively. IfBBBXXXAAA satisfies(P1)–(P3)thenBXA also satisfies(P1)–(P3).

Proof. The properties (X1)–(X3), (X4a), and (X5) are an easy check. Thus let us consider
(P1) where we assumeXXX = ⊕i∈IXXX(i). Then clearly

∑
i∈ICXXX

(i) coincides with the whole
spaceCXXX and the sum is also orthogonal. But from the above remark we conclude that the
sum is also direct and hence (P1) is valid for the classical limit. Finally (P2) is obvious and
(P3) follows by takingCΩΩΩ(i)

α as pseudo-cyclic vectors forCXXX(i). �

For the fullness condition (X6) we may even use a topological version using theλ-adic
topology ofAAA. We define

(tX6) C[[λ]]-span{〈xxx,yyy〉AAA|xxx,yyy ∈BBBXXXAAA} is λ-adically dense inAAA = A[[λ]],

which actually will be sufficient for our constructions. In particular, the classical limit of
(tX6) yields (X6) through analogous arguments as in the proof of Lemma 8.1:

Lemma 9.2. If theAAA-valued inner product〈·, ·〉AAA satisfies(tX6) then the classical limit
〈·, ·〉A satisfies(X6).

Let us finally discuss the two positivity requirements (X4) and (P), which turn out to be
more involved. We have already observed that the classical limit of a positiveC[[λ]]-linear
functional ofAAA is a positiveC-linear functional ofA. On the other hand, there may be ‘fewer’
positiveC[[λ]]-linear functionals ofAAA and thus the condition〈xxx,xxx〉AAA ∈ AAA+ for xxx ∈BBBXXXAAA
would imply only aweakercondition in the classical limit and thus one could not necessarily
guarantee〈Cxxx,Cxxx〉A ∈ A+ for Cxxx ∈BXA, i.e. (X4) for the classical limit. Nevertheless,
in the case of apositive deformationwe have ‘enough’ positive linear functionals forAAA:

Lemma 9.3. Let (AAA, µA, IA) be a positive deformation ofA andBBBXXXAAA a (BBB-AAA)-bimodule
withAAA-valued inner product. Then(X4) for 〈·, ·〉AAA implies(X4) for the classical limit〈·, ·〉A.

Proof. Let x = Cxxx ∈ BXA then we have to proveω0(〈x, x〉A) ≥ 0 for all positive linear
functionalsω0 : A → C. Choose a positiveC[[λ]]-linear functionalω = ∑∞

r=0λ
rωr :

AAA→ C[[λ]] with Cω = ω0 which exists sinceAAA is a positive deformation. Thenω(〈xxx,xxx〉AAA)
≥ 0 by (X4) impliesω0(〈x, x〉A) ≥ 0. �
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Concerning the property (P) we face an analogous problem as for (X4) since if(H, π) is
a ∗-representation ofA which appears as classical limit of a∗-representation(HHH,πππ) ofAAA
then we can easily conclude the semi-definite positivity of the induced inner product〈·, ·〉

K̃
by taking the classical limit everywhere. The problem arises since not all∗-representation
ofA have to necessarily appear as classical limit of a∗-representation ofAAA. Thus one is led
to the question ofdeformability of∗-representationsof A into ∗-representations of a given
∗-algebra deformationAAA of A. We shall not discuss this matter any further in this work
but leave this as an open question for future investigations. Nevertheless, in most of our
examples the property (P) follows either from (P1)–(P3), which behave well with respect
to the classical limit, or can be shown directly by other techniques. Let us summarize the
results so far in the following proposition.

Proposition 9.4. Let AAA, BBB be ∗-algebra deformations of∗-algebrasA, B over C and
let BBBXXXAAA be a(BBB-AAA)-bimodule with aAAA-valued inner product〈·, ·〉AAA such that the prop-
erties (X1)–(X3), (X4a), (X5), (tX6)or (P1)–(P3)are satisfied. Then the classical limit

BXA = CBBBXXXAAA carries a(B-A)-bimodule structure and aA-valued inner product satisfy-
ing (X1)–(X3), (X4a), (X5), (X6),or (P1)–(P3),respectively. If in additionAAA is a positive
deformation and〈·, ·〉AAA only satisfies(X4) instead of(X4a) then〈·, ·〉A also satisfies(X4).

A simple computation yields the following useful relation between the functorRX of
algebraic Rieffel induction coming form a (BBB-AAA)-bimodule and the functorRX of the
corresponding classical limit.

Proposition 9.5. LetAAA, BBB be ∗-algebra deformations of∗-algebrasA, B overC and let

BBBXXXAAA be a (BBB-AAA)-bimodule withAAA-valued inner product satisfying(X1)–(X5) and (P).
Assume furthermore that the classical limitBXA also satisfies(X4) and (P). Then the
functorsC ◦RX andRX ◦ C are naturally isomorphic: for a∗-representation(HHH,πππ) ofAAA
the mapU : CRX(HHH)→ RXC(HHH) defined forxxx ∈BBBXXXAAA andφ ∈ HHH by

U(C([xxx ⊗ φ])) := [Cxxx ⊗ Cφ] (9.5)

is a unitary intertwiner betweenCRX(πππ) andRXC(πππ).

Proof. Using the present results the well-definedness ofU is easily established. The rest
is a simple computation. �

Let us now turn to equivalence bimodules forBBB andAAA, where we shall assume that the
undeformed∗-algebrasA andB have an approximate identity. Then given an equivalence
bimoduleBBBXXXAAA we have in principle two ways to define the classical limit: either we use
theAAA-valued inner product to defineXXXL or we use theBBB-valued inner product to define

LXXX := {x ∈BBBXXXAAA|∀yyy ∈BBBXXXAAA : CBBB〈xxx,yyy〉 = 0} and use the corresponding quotients as
classical limit. Fortunately, both spaces coincide and we actually do not need the positivity
requirements:
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Lemma 9.6. LetBBBXXXAAA be a(BBB-AAA)-bimodule withAAA- andBBB-valued inner products satisfying
(X1)–(X3), (X5), (tX6) and (Y1)–(Y3), (Y5), (tY6), respectively, as well as(E3). Then

LXXX = XXXL.

Proof. We can proceed almost analogously as in the proof of Proposition 5.16. First we
need the following analogue of Lemma 5.15: letB ∈ B and assumeLLLBBB(B)xxx ∈ λBBBXXXAAA for all
xxx ∈BBBXXXAAA and letEα ∈ B satisfyEαB = B = BEα. Due to the topological fullness ofBBB〈·, ·〉
we findxxxi,yyyi ∈BBBXXXAAA such thatEα =

∑
i BBB〈xxxi,yyyi〉 + λC with some elementC ∈ BBB. Then

B = ∑i BBB〈LLLBBB(B0)xxxi,yyyi〉 + λBC′ = λC′′ shows thatB cannot have a zeroth order and
henceB = 0. Now letxxx ∈ XXXL andyyy,zzz ∈ XXX thenLLLBBB(BBB〈yyy,xxx〉)zzz = yRyRyRAAA(〈xxx,zzz〉AAA) ∈ λBBBXXXAAA
implies thatB := CBBB〈yyy,xxx〉 satisfiesLLLBBB(B)BBBXXXAAA ⊆ λBBBXXXAAA whenceB = 0. Thusxxx ∈ LXXX

follows. Reverting the argument finishes the proof. �

Thus the classical limitBXA = CBBBXXXAAA =BBBXXXAAA/XXXL is a(B-A)-bimodule and inherits a
B-valued andA-valued inner product. In order to guarantee thatBXA is indeed an equiva-
lence bimodule we have to guarantee the positivity requirements (X4) and (Y4) as well as
(P) and (Q). For the first two, it is sufficient to consider positive deformationsAAA andBBB of
A andB, respectively. For the second two, we can either impose the stronger conditions
(P1)–(P3) and (Q1)–(Q3) which behave well under the classical limit or we have to know
more on the deformability of∗-representations. For the next theorem we shall assume that
we are able to guarantee (P) and (Q) directly.

Theorem 9.7. LetAAA,BBB be positive deformations of∗-algebrasA, B overC with approxi-
mate identities and letBBBXXXAAA be a(BBB-AAA)-equivalence bimodule(where we actually only need
(tX6) and(tY6)). If the classical limitBXA =BBB XXXAAA/XXXL satisfies(P)and(Q) thenBXA is
a (B-A)-equivalence bimodule. IfBBBXXXAAA satisfies in addition(P1)–(P3)and(Q1)–(Q3)then
the classical limit is automatically an equivalence bimodule also satisfying(P1)–(P3)and
(Q1)–(Q3).

Proof. It remains to show (E3) for the classical limit which is a simple computation.�

We shall now discuss some more particular cases. First we can consider a bimodule for
the deformed algebras of the more particular formBBBXXXAAA = X[[λ]], whereX is aC-module.
From the deformation point of view this is a natural restriction. In this case we can use the
λ-adic topology ofX[[λ]] to define also topological versions of the conditions (P1)–(P3),
which are slightly weaker:

(tP1) There existC[[λ]]-submodulesXXX(i) ⊆BBBXXXAAA, i ∈ I , such thatXXX(i) ⊥ XXX(j) for all
i 6= j ∈ I with respect to〈·, ·〉A and⊕i∈IXXX(i) is λ-adically dense inBBBXXXAAA = X[[λ]].
(tP2) TheAAA-right actionRRRA preserves this direct sum.
(tP3) EachXXX(i) is topologically pseudo-cyclic forRRRA, i.e. there exist directed sub-
modules{XXX(i)α }α∈I (i) with pseudo-cyclic vectorsΩΩΩ(i)

α such that
⋃
α∈I (i)XXX

(i)
α isλ-adically

dense inXXX(i).
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An easy check similar to the proof of Lemma 3.1 ensures that (tP1)–(tP3) still imply (P).
Then the next lemma is shown straightforwardly using analogous arguments as in the proof
of Lemma 8.1.

Lemma 9.8. If in addition, the bimodule is of the formBBBXXXAAA = X[[λ]] and satisfies
(tP1)–(tP3)then the classical limitBXA satisfies(P1)–(P3).

The other important case is when the∗-algebrasA andB have sufficiently many positive
linear functionals (and approximate identities) and when we consider positive deformations
AAA andBBB which is the case in deformation quantization. Then one can characterize the space
XXXL as in the case of pre-Hilbert spaces by the following lemma.

Lemma 9.9. The spaceXXXL coincides with{xxx ∈BBBXXXAAA|C〈xxx,xxx〉AAA = 0}.

Proof. One inclusion is trivial. For the other we considerxxx,yyy ∈BBBXXXAAA, then we have for all
positiveC[[λ]]-linear functionalsω :AAA→ C[[λ]] the inequalityω(〈xxx,yyy〉AAA)ω(〈xxx,yyy〉AAA) ≤
ω(〈xxx,xxx〉AAA)ω(〈yyy,yyy〉AAA). Hence we obtain in the classical limit

ω0(C〈xxx,yyy〉AAA)ω0(C〈xxx,yyy〉AAA) ≤ ω0(C〈xxx,xxx〉AAA)ω0(C〈yyy,yyy〉AAA),

whereω0 = Cω is the classical limit ofω. If C〈xxx,xxx〉AAA = 0 thenω0(C〈xxx,yyy〉AAA) = 0 follows.
SinceAAA is a positive deformation any positive linear functional ofA occurs as classical limit
of someω and sinceA has sufficiently many positive linear functionals and an approximate
identity it follows from Proposition 2.8 thatC〈x, y〉A = 0. �

Thus in this case we automatically end up with a classical limitBXA ofBBBXXXAAA which satis-
fies (X4′). Hence, in the case of an equivalence bimoduleBBBXXXAAA we obtain anon-degenerate
equivalence bimoduleBXA in the classical limit (whenever we can guarantee (P) and (Q)
for BXA).

As an application to deformation quantization we observe thatC∞0 (M)as well asC∞(M)
have sufficiently many positive linear functionals (use theδ-functionals) as well as approxi-
mate identities, and that star products on symplectic manifolds are positive deformations, see
[23, Proposition 5.1] and Corollary B.5. Thus we are in the ‘optimal’ situation in this case.
Nevertheless, to show that formally Morita equivalent star products imply diffeomorphic
underlying manifolds, we essentially do not need any positivity requirements. In fact, we
only need a bimodule satisfying (E1)–(E3) without (X4) and (Y4) for the quantized algebras
in order to obtain a bimodule satisfying (E1)–(E3) (without (X4) and (Y4)) in the classical
limit. This is already sufficient to guarantee that the underlying manifolds are diffeomorphic
according to the results on commutative∗-algebras in Section 7 whence we can state this
result for arbitrary Poisson manifolds.

Corollary 9.10. Let(M, ∗) and(M̃, ∗̃) be Poisson manifolds with Hermitian star products
such that for(C∞(M)[[λ]] , ∗) and (C∞(M̃)[[λ]] , ∗̃) there exists a bimodule satisfying
(E1)–(E3) (not necessarily(X4) and(Y4)). Then M andM̃ are diffeomorphic.
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In particular the above corollary gives an ‘asymptotic’ explanation why Morita equivalent
(in theC∗-algebraic sense) quantum tori have to have at least the same classical dimension,
see also [69] for a more sophisticated discussion on the Morita equivalence of quantum tori.

Let us now conclude with a few remarks on the ‘reverse’ question, namely of defor-
mation of bimodules. Assume that two∗-algebra deformationsAAA, BBB of two ∗-algebras
A, B over C are given and let furthermore a (B-A)-bimoduleBXA with A-valued inner
product〈·, ·〉A with some properties like, e.g. (X1)–(X5), (P), or (P1)–(P3) be given. Then
a (BBB-AAA)-bimodule deformationof BXA is a (BBB-AAA)-bimoduleBBBXXXAAA with AAA-valued inner
product, having the same properties, such that the classical limit ofBBBXXXAAA is BXA. More
restrictively, one can demand thatBBBXXXAAA = BXA[[λ]] asC[[λ]]-module.

In general the question of existence of such a deformation is very hard to attack: for
the deformation of the bimodule structure alone one can apply the usual cohomological
techniques which are already rather complicated as we have to deal with a bimodule instead
of a module. Thus the Hochschild cohomology ofB ⊗ Aop with values inBXA viewed
asB ⊗ Aop-module becomes relevant. But since we also want anAAA-valued inner product
one has even more obstructions as one wantspositivity of this inner product. Thus the
inequalitiesoccurring in the positivity requirements do not seem to permit a cohomological
approach and thus one has to develop further techniques in order to deal with this question.

Another question concerning the deformations of such bimodules is the uniqueness of the
deformations: here one has to develop a reasonable notion of ‘equivalence of deformations’.
One possibility is that one calls two deformations ofBXA functorially equivalentif the
corresponding functors of algebraic Rieffel induction are naturally isomorphic. We shall
leave these questions to future work and discuss only one example based on Proposition
4.8.

LetΦ : B→ A be a∗-homomorphism of∗-algebras overC and let∗-algebra deforma-
tionsAAA andBBB of A andB, respectively, be given. Then we consider the (B-A)-bimodule

Φ(B)AA with theA-valued inner product as in (4.7). If we are able to find a deformation
ΦΦΦ = ∑∞r=0λ

rΦΦΦr of Φ = ΦΦΦ0 into a∗-homomorphismΦΦΦ : BBB → AAA of the deformed alge-
bras then it is an easy check that the corresponding bimoduleΦΦΦ(BBB)AAAAAA is a deformation of

Φ(B)AA: in this case the complicated question of the positivity properties (X4) and (P) is
trivially answered by Proposition 4.8 and we are ‘only’ faced with the cohomological prob-
lem of finding a deformation of a∗-homomorphism, which is of course still complicated
enough.

Proposition 9.11. LetAAA,BBB be∗-algebra deformations of∗-algebrasA andB overC and
letΦΦΦ : BBB → AAA be a∗-homomorphism. ThenΦΦΦ(BBB)AAAAAA is a deformation ofΦ(B)AA, where
Φ : B→ A is the classical limit ofΦΦΦ.

10. Conclusion and further questions

We shall conclude this work with some final remarks and additional questions arising
from our approach to Rieffel induction and Morita equivalence. We hope a foundation has
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been laid for further investigations and applications of these ideas, which we plan to study
in the future.

First of all, the relation of the original notion of Rieffel induction and Morita equivalence
for C∗-algebras to our more algebraic point of view needs further study. Many of our
algebraic results, including the proofs, are motivated by theC∗-algebraic case so it would
be interesting to see to what extent further results can be carried to the purely algebraic
framework. First steps into this direction are done in [23]. On one hand, this can help
understanding what is particular toC∗-algebras and, on the other hand, one could make
many of theC∗-algebra results available also for other∗-algebras, which is interesting from
the mathematical and physical points of view. In particular, studying∗-algebras overC =
C[[λ]] is of special interest, as this ring governs various asymptotic situations in physics: the
formal parameterλ could correspond to Planck’s constant~ as in deformation quantization
but also to a coupling constantα as in various versions of perturbation theory (see, e.g.,
[34,35] for recent usage of the order structure ofR[[λ]] in the context of quantum field
theory). A better understanding of concrete connections between formal andC∗-algebraic
Morita equivalence would be of special interest for the case of quantum tori, since they have
gained increasing attention due to their relation to string and M theories, see, e.g., [30,69,71].
It seems reasonable to apply the asymptotic approach usingC[[λ]] to this example, since
the quantum tori are entirely determined by their classical, flat Poisson structure onT n and
the corresponding Weyl–Moyal star product.

Second, again motivated by deformation quantization, one can try to develop topolog-
ical versions of the constructions in this paper ‘in between’ the purely algebraic context
and theC∗-algebraic case. In deformation quantization, it seems that the locally convex
topologies of smooth functions are ‘closer’ to the formal approach than theC∗-norm based
topologies, examples can be found in [15–17,62,63]. Thus it seems reasonable to use these
intermediate topologies to handle the convergence problems of formal deformations. One
can also use the canonical order topology of the underlying ordered ring to develop a
‘non-Archimedian functional analysis’, a point of view taken, e.g. in [21] and references
therein.

Third, from a more geometrical point of view, one should compare Xu’s notion of Morita
equivalence for Poisson manifolds with our notion for star products. At first glance, one
is tempted to view Xu’s notion as the ‘first non-trivial order’ of deformation quantization.
However, Corollary 9.10 and [80] (see also, e.g., [28, Proposition 8.6]) show that, at least
in this naive way, this is not the case. So the possible relation between these ideas need
further study. More generally, one could try to use the algebraic framework, especially for
C = C[[λ]], to establish asymptotic analogues of quantum geometry in the spirit of Connes’
non-commutative geometry [29] and study (semi-)classical limits. Physically,λ could play
here the role of a parameter associated to the Planck scale.

Fourth, there arise several natural questions within the framework of deformation quanti-
zation. Most important is the task to determine the equivalence classes of Morita equivalent
star products (note that Theorem 9.7 suggests that the underlying manifold has to be the
same). We observe that Rieffel induction alone is of great interest as it may provide a way for
quantizing phase space reduction from the viewpoint of states and representations. While the
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reduction of the related observable algebras is quite well-understood in the most important
cases [14,40], a formulation for the states is still missing. We also remark that Landsman
uses Rieffel induction within theC∗-algebraic framework to formulate analogues of phase
space reduction, see [51] and references therein. Again our approach seems to be most
suited to formulate an asymptotic analogue filling the gaps between [14] and [51]. Finally,
the relation between formal Morita equivalence and the locality structures as discussed in
[75] should be investigated and results like Proposition 4.2 should be further explored in
this context.

Fifth, there are further physical applications where the asymptotic point of view can be
used. We can mention here the WKB approximation scheme (as well as the closely related
short wave approximation in theoretical optics), see, e.g., [8]. It is not surprising, due to
the asymptotic character of this method, that it admits a formulation within the framework
of formal deformation quantization, see [17,20]. In particular, it seems possible to use our
results of Section 6 to find a transition from [17,20] to endomorphism-valued Hamiltonians
as discussed, e.g. in [36,37].

Finally, we mention some purely algebraic open questions. It would be interesting to
find more examples or counter-examples which illustrate how strong the notion of for-
mal Morita equivalence is. First, one could try to find an example of two∗-algebras with
sufficiently many positive linear functionals and approximate identities which have equiva-
lent categories of strongly non-degenerate∗-representations but no equivalence bimodule.
Recall that our example in Corollary 5.20 uses the Grassmann algebra which has ‘few’
positive linear functionals. A more general class of examples based on this idea is dis-
cussed in [44]. Second, we have not addressed the question of how the lattices of ide-
als (or ∗-ideals) are related for formally Morita equivalent∗-algebras. As in the case of
C∗-algebras, one can prove that for formally Morita equivalent∗-algebras, the lattices of
closed∗-ideals are isomorphic. Here a∗-ideal is called closed if it occurs as the kernel
of a ∗-representation, see [44]. In [44] we compute further ‘invariants’ of formal Morita
equivalence. In the case of deformation quantization, one can even imagine obtaining finer
results by considering the locality structure as in [75]. It appears that for the question of
formal Morita-invariants, the positivity requirements ((E4), (X4), (Y4)) might play only
a minor role and thus one should consider bimodules not necessarily fulfilling them (see
note below). Perhaps one is able to show the positivity requirements directly for some
cases (at least for strongly non-degenerate∗-representations), as this is possible forC∗-
algebras.

Note. After the completion of this article, Prof. Ara brought his work [4,5] to our attention.
In [5], Ara develops the notion of Morita equivalence for (non-degenerate and idempotent)
rings with involution (called Morita∗-equivalence), which encompasses the notion of for-
mal Morita equivalence as defined here. For these rings, Ara considers suitable categories
of modules, studies certain types of (pairs of) functors defining equivalence of these cat-
egories and succeeds in proving a Morita-like theorem that characterizes these functors
in terms of the existence of ’inner product bimodules’ (which are essentially our equiva-
lence bimodules without the positivity requirements (X4), (Y4), (E4)). Ara also shows that
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Morita ∗-equivalent rings have∗-isomorphic centroids and, as a consequence, that Morita
∗-equivalence implies∗-isomorphism for commutative rings. His results hold in our setting,
that is, for∗-algebras overC = R(i), provided one assumes the existence of approximate
identities (to make the∗-algebras non-degenerate and idempotent), and in particular can be
used to extend Proposition 7.6 and Corollary 7.7 to non-unital situations. However, the no-
tion of positivity, which is crucial throughout the present paper, is absent in Ara’s approach.
Moreover, several constructions and results presented here do not assume the∗-algebras to
be non-degenerate or idempotent. In [44] we investigate the relations between these two
approaches more closely.
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Appendix A. Positive matrices over ordered rings

In this appendix we collect some results on positive matrices inMn(C), whereC = R(i)
with an ordered ringR. The main point we want to emphasize is that almost all results on
positive matrices known fromMn(C) can be carried over to this more general situation if
one avoids the notion of square roots in the proofs.

Consider the freeC-moduleCn with canonical basise1, . . . , en and define the usual
Hermitian product as in Section 6, where we have seen thatMn(C) coincides withB(Cn)
after the usual identification with EndC(Cn). ThusMn(C) becomes a∗-algebra in the usual
way and we want to study the positive linear functionals and the positive elements ofMn(C).
SinceMn(C) is a free module any linear functionalω : Mn(C)→ C can be written in the
form

ω : A 7→ ω(A) = tr(%A), with % ∈ Mn(C), (A.1)

using the trace functional tr. Clearlyω is a real functional if and only if% = %∗. As a
positive functional is necessarily real (sinceMn(C) has a unit element) we restrict ourselves
to Hermitian matrices% from now on.

Lemma A.1. Let % = %∗ ∈ Mn(C) thentr(%A∗A) ≥ 0 for all A ∈ Mn(C) if and only if
〈v, %v〉 ≥ 0 for all v ∈ Cn.

Proof. If 〈v, %v〉 ≥ 0 for all v ∈ Cn then considerv(k)i := Aki whence tr(%A∗A) =∑
k〈v(k), %v(k)〉 ≥ 0 for all A ∈ Mn(C) follows. If on the other hand tr(%A∗A) ≥ 0 for

all A then chooseA with Aki = vi for k = 1, . . . , n. Then tr(%A∗A) = ∑
k〈v, %v〉 =
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n〈v, %v〉 ≥ 0. But sinceR has characteristic zero andn > 0 we conclude〈v, %v〉
≥ 0. �

We call a Hermitian matrix% satisfying〈v, %v〉 ≥ 0 for all v ∈ Cn a density matrix,
and hence we have established a one-to-one correspondence between density matrices and
positive linear functionals ofMn(C).

In order to characterize the positive elements inMn(C)we have first to pass to the quotient
fieldsR̂ andĈ of R andC. Remember that̂R is an ordered field such thatR ↪→ R̂ is order
preserving, and canonically one hasĈ ∼= R̂(i). Then the canonical inclusionMn(C) ↪→
Mn(Ĉ) is an injective∗-homomorphism of∗-algebras overC. The following lemma shows
that a density matrix% ∈ Mn(C) is still a density matrix inMn(Ĉ).

Lemma A.2. Let % ∈ Mn(C) be a Hermitian matrix. Then〈v, %v〉 ≥ 0 for all v ∈ Cn if
and only if〈v̂, %v̂〉 ≥ 0 for all v̂ ∈ Ĉn.

Proof. The proof is obtained by observing that for finitely many elementsv̂i ∈ Ĉ, written as
fractions, we can find a common denominator which we can choose real and
positive. �

Lemma A.3. Let % ∈ Mn(Ĉ) be a density matrix. Then there exists a basisv1, . . . , vn of
Ĉn and non-negative numbersp1, . . . , pn ∈ R̂ such that〈vi, %vj 〉 = δijpi for all i, j .

Proof. This is standard, see, e.g., [45, Theorem 6.19], wherepi ≥ 0 follows frompi =
〈vi, %vi〉 ≥ 0. �

Note that for the above lemma we have to use the quotient fieldsR̂ andĈ instead ofR
and C. Denoting byU ∈ Mn(Ĉ) the invertible matrix of the basis transformation, i.e.
ei = Uvi for i = 1, . . . , n, we obtain the following form of%

% =
∑
i

piU
∗PiU =

∑
i

piU
∗P ∗i PiU ∈ Mn(Ĉ)++, (A.2)

wherePi = P ∗i = P 2
i ∈ Mn(Ĉ) is the matrix such thatPiv = 〈ei, v〉ei . Note thatU is not

unitary in general. Nevertheless we can use (A.2) to prove the following proposition.

Proposition A.4. LetA ∈ Mn(C) be Hermitian. Then A is positive if and only if A is a
density matrix, i.e.〈v,Av〉 ≥ 0 for all v ∈ Cn.

Proof. If A is positive then clearly〈v,Av〉 ≥ 0 for all v ∈ Cn since the functionalA 7→
〈v,Av〉 is a positive linear functional. For the other direction we have to showω(A) ≥ 0
for all positive linear functionalsω : Mn(C) → C. Due to Lemma A.1 we have to show
tr(%A) ≥ 0 for all density matrices% ∈ Mn(C), and Lemma A.2 allows us to consider
Ĉ instead ofC. Then tr(%A) = ∑ipi tr(U

∗PiUA) = ∑ipi〈U∗ei,AU∗ei〉 ≥ 0 proves the
proposition. �
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As a remark we would like to mention that ifR̂ is a real closed field then̂C is algebraically
closed and thus any density matrix% ∈ Mn(Ĉ) can be diagonalized by a unitary matrix
with positive eigenvaluesλi ≥ 0. Thus tr(%A) can be computed in the eigenbasis of%,
simplifying the proof. On the other hand, an analogue of Lemma A.2 is not necessarily true
if the quotient fields are replace by the real and algebraic closures, respectively. In case
R = Z, R̂ = Q and the real and algebraic closures ofQ, a simple continuity argument
proves an analogue of Lemma A.2 sinceQ is dense in its real closure with respect to the
order topology. But in general this is no longer true, e.g. the field of formal Laurent series
R((λ)) is not dense with respect to the order topology in its real closureR〈〈λ∗〉〉, the field
of formal Newton–Puiseux series, see, e.g., [17,21]. Let us finally mention the following
corollaries.

Corollary A.5. LetA,B ∈ Mn(C) be positive matrices thentr(AB) ≥ 0.

Corollary A.6. LetA ∈ Mn(C)+ thenA ∈ Mn(Ĉ)++.

Corollary A.7. LetH1, H2 be twoC-modules with positive semi-definite Hermitian pro-
ducts. Then〈φ ⊗ ψ, φ′ ⊗ ψ ′〉H := 〈φ, φ′〉1〈ψ,ψ ′〉2 extends to a positive semi-definite
Hermitian product onH = H1⊗ H2.

Proof. Letχ = φ1⊗ψ1+· · ·+φn⊗ψn ∈ H then〈χ, χ〉 = tr(MN), whereM,N ∈ Mn(C)
are given by their matrix elementsMij = 〈φi, φj 〉1 andN = 〈ψj ,ψi〉2. ClearlyM, N are
positive matrices since〈v,Mv〉 = 〈φ, φ〉 ≥ 0 whereφ = v1φ1 + · · · + vnφn andv ∈ Cn,
and similar forN . Then〈χ, χ〉H ≥ 0 by Corollary A.5. �

Appendix B. Positive linear functionals forC∞0 (M)C∞0 (M)C∞0 (M) andC∞(M)C∞(M)C∞(M)

As deformation quantization is our main motivation, we shall use this appendix to describe
its classical limit and show that forC∞0 (M) andC∞(M), our characterization of positive
linear functionals and algebra elements yields the expected results. Some subtleties arise
as the Riesz’ representation theorem, which essentially governs the situation, is usually
only considered in the continuous category while we have to work in the smooth category
using also functions with non-compact support. Thus the following lemmas, which should
be well-known, can be viewed as ‘positivity implies continuity’ statements in the smooth
category.

Lemma B.1. Let ω : C∞0 (M) ⊕ C1 → C be a positive linear functional. Thenω is
continuous with respect to the sup-norm, i.e.|ω(f )| ≤ ω(1)‖f ‖∞ for all f ∈ C∞0 (M)⊕C1.

Proof. Letf ∈ C∞0 (M)⊕C1 then‖f ‖2∞1−f f ∈ C∞0 (M)⊕C1 is non-negative whence
for all ε > 0 the function(‖f ‖2∞ + ε)1− f f is strictly positive. Thus the square root
is still smooth and contained inC∞0 (M) ⊕ C1 whenceω((‖f ‖2∞ + ε)1 − f f ) ≥ 0.
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Thusω(f f ) ≤ ‖f ‖2∞ω(1) follows and with the Cauchy–Schwarz inequality|ω(f )|2 ≤
ω(f f )ω(1) ≤ ‖f ‖2∞ω(1)2, the proof is finished. �

Thusω extends uniquely to theC∗-algebra completion ofC∞0 (M)⊕ C1 and by Riesz’
representation theorem, see, e.g., [70, p. 40], we conclude thatω is given by a positive
measure of finite volume given byω(1).

If we now considerC∞0 (M) instead, then a positive linear functional needs no longer
to be continuous in the sup-norm, take, e.g.M = R andf 7→ ∫

R
f (x)x2 dx, but ‘locally’

this is still true: choose an approximate identity{On, χn}n∈N and letω : C∞0 (M) → C
be a positive linear functional, thenωn(f ) := ω(χnf χn) is still positive and has compact
support inOn+1 such that the restrictions ofω andωn on C∞0 (On) coincide. A simple
computation shows thatωn can now be extended in a unique way to a well-defined positive
linear functional ofC∞0 (M)⊕ C1 by settingωn(1) = ω(χnχn) whence we can apply the
last lemma. Thusωn is given by a positive measure having compact support inOn+1 and
we thus conclude the following lemma.

Lemma B.2. Letω : C∞0 (M) → C be a positive linear functional. Thenω is given by a
positive measure with finite volume for all compact subsets of M.

Finally, consider a positive linear functionalω : C∞(M)→ C and letf ∈ C∞(M). By
the Cauchy–Schwarz inequality we find|ω((1− χn)f )|2 ≤ ω((1− χn)(1− χn))ω(f f ),
where we used again an approximate identity. But since 1− χn ∈ C∞0 (M) ⊕ C1 we can
apply Lemma B.1 whence in particularω((1 − χn)(1 − χn)) → 0 asn → ∞. Thus
ω((1−χn)f )→ 0, too, and henceω(χnf )→ ω(f ). Thusω is completely determined by
its restriction toC∞0 (M)⊕ C1. In the case whereM is non-compact we find ‘sufficiently
unbounded’ functionsf ∈ C∞(M) to conclude that the measure actually has not only finite
volume but even compact support.

Lemma B.3. Letω : C∞(M) → C be a positive linear functional. Thenω is given by a
positive measure with compact support.

Since theδ-functionals are clearly positive linear functionals it follows thatf (x) ≥ 0 for
all x ∈ M is a necessary condition for a function to be a positive algebra element in sense
of Definition 2.3. The above form of the positive linear functionals ofC∞(M) orC∞0 (M)
shows that this is also sufficient, as one would expect the corollary.

Corollary B.4. f ∈ C∞(M)+ (or C∞0 (M)
+) if and only iff (x) ≥ 0 for all x ∈ M.

Corollary B.5. Let(M, ∗) be a symplectic manifold with Hermitian star product. Then the
algebra(C∞(M)[[λ]] , ∗) is a positive deformation.

Proof. The case(C∞0 (M)[[λ]] , ∗) was shown in [23, Proposition 5.1]. Since any positive
linear functional ofC∞(M) is given by a positive linear functional ofC∞0 (M) having
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compact support and since the construction in [23, Proposition 5.1] does not increase the
support, the corollary follows. �
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