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Abstract

In this paper, we consider algebras with involution over a @inghich is given by the quadratic
extension by i of an ordered ring. We discuss thé-representation theory of su¢halgebras
on pre-Hilbert spaces oveT and develop the notions of Rieffel induction and formal Morita
equivalence for this category analogously to the situatiorCfoealgebras. Throughout this paper,
the notion of positive functionals and positive algebra elements will be crucial for all constructions.
As inthe case of *-algebras, we show that the GNS constructioh-gépresentations can be under-
stood as Rieffel induction and, moreover, that formal Morita equivalence oftgebras, which
is defined by the existence of a bimodule with certain additional structures, implies the equivalence
of the categories of strongly non-degenefatepresentations of the tviealgebras. We discuss var-
ious examples like finite rank operators on pre-Hilbert spaces and matrix algebrésabyebras.
Formal Morita equivalence is shown to imply Morita equivalence in the ring-theoretic framework.
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1. Introduction and motivation

In this work, we discuss algebras with*anvolution over ordered rings, study their
representation theory, and develop tools analogously to the well-known d@seatifebras.

Our main motivation comes from deformation quantization, where the star product algebras
still have a*-involution but no topological structure like@*-norm, and there are further
examples and applications both in physics and mathematics. We start with an ordeRed ring
and its quadratic ring extensi@ = R(i), where # = —1, and considef-algebras ove€.

The interplay between the ordering structur®iand the*-involution gives rise to various
notions of positivity which make up the heart of this paper. We consider,f@algebra over

C, the category of-representations on pre-Hilbert spaces d@eand find that positivity
and*-involution together are sufficiently powerful tools which enable us to formulate many
results known fromC*-algebras in this purely algebraic framework. Following the general
idea of concentrating on the algebraic propertie€ tfalgebras, we consider in this paper
analogues of Rieffel induction and Morita equivalence as well as various aspects of formal
deformation theory related to these constructions.

The concept of Morita equivalence has been applied to many different categories in
mathematics, and its main goal is to explore the relationship between ‘objects’ and their
‘representation theory’, i.e. their ‘theory of modules’. This idea was first made precise in a
purely algebraic context, the category of unital rings, by Morita, see [7,55,56]: two unital
rings are called Morita equivalent if their categories of left modules are equivalent [54].
The main result of this theory states that Morita equivalent rings always come with a pair
of corresponding bimodules of a certain type in such a way that the functors implementing
the equivalence of the categories are actually equivalent to tensoring with these bimodules.
Morita equivalent rings share many ring theoretical properties, the ‘Morita invariants’,
like Hochschild cohomology and algebrakt-theory and properties like being Artinian,
semi-simple, or Noetherian, see [2,42,50]. They also have isomorphic lattices of ideals and
isomorphic centers. It follows that commutative unital rings are Morita equivalent if and
only if they are isomorphic, hence Morita equivalence is most interesting if at least one of the
rings is non-commutative. Commutativity is not Morita invariant and in fact, the classical
example of Morita equivalent rings is given by a unital riR@gnd the corresponding matrix
ring M, (R).

Since then, the notion of Morita equivalence has been adapted to many other algebraic
contexts, such asnon-unitalrings[1,3,61], monoids [6,48], coalgebras [52] as well as to more
topological and geometric settings, as for example topological groupoids [57], symplectic
groupoids and Poisson manifolds [79,80]. In a recent work, Ara [5] defined the notion of
Morita equivalence for rings with involution, which is related to the approach developed in
the present paper (see note added to the end of Section 10).

In the context ofC*-algebras, the ‘theory of modules’ is given Byrepresentations
on Hilbert spaces. Here Rieffel defined the notion of (strong) Morita equivalence and in-
duced representations motivated mainly by the theory of induced representations of locally
compact groups by closed subgroups [65,66]. In particular, a new and simpler proof of
Mackey’s imprimitivity theorem [53] was given in terms of groaf¥-algebras, see [65]
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and also [51,64] for further discussions and applications. A related approach was developed
by Fell in [41] for Banach algebras, which also led to a proof of Mackey’s imprimitivity
theorem through group algebras. The fundamental notion of induced representations of
C*-algebras, now called ‘Rieffel induction’, is th&*-algebra analogue of the older idea

of constructing functors between categories of modules over RngsdS by means of
tensoring with anlR—S)-bimodule. In this purely algebraic setting, functors arising in this
way are rather general and, in fact, any equivalence of categories must be of this type (see
[7,76]). For Rieffel's induction, one has to add additional structures to the bimodule in order
to end up again with a representation on a Hilbert space. This inductierepfesentations

as well as the notion of Morita equivalence have become important tools in the study of
C*-algebras, and Morita equivalence is now one of the mostimportant equivalence relations
in this category, see also [64,67] and references therein. Moreover, both Rieffel induction
and Morita equivalence af*-algebras have been used in various fields of physics like
guantization and phase space reduction [51]; they also arise in the context of applications
of non-commutative geometry to string and M theory [30,69,71,72].

On the other hand, there are many situations in mathematics and physics where inter-
esting algebras occur which are r@t-algebras and where no obvious embedding into a
C*-algebra is available. The canonical commutation relatigng] = i are known to be
incompatible with a representation by bounded operators and, more generally, the commu-
tation relations in the universal enveloping algebra of a Lie algebra typically exhibit this
behavior. While in this case one can obtain bounded operator representations by passing to
unitary group representations, in the more general cagedeformed universal enveloping
algebras it is less evident whether one can ‘exponentiate’ in a meaningful way to obtain
bounded operator representations, see, e.g., [47] and references therein. Another typical
example is given by the algebra of (pseudo-)differential operators on a manifold. Certain
subspaces of pseudo-differential operators déefialgebras, where thieinvolution can be
induced by their action on the smooth functions with compact support equipped with a Her-
mitian product given by a positive density, see, e.g., [15]. These operators are continuous
with respect to certain locally convex topologies of smooth functions, but they are typically
unbounded with respect to the operator norm induced by the pre-Hilbert space structure of
smooth functions with compact support. Finally, closely related to this situation, our main
example is given by deformation quantization as introduced by Bayen et al. [9]; see also
[73,77] for recent surveys. In this quantization scheme, the classical observable algebra is
given by the complex-valued smooth functions on a symplectic, or, more generally, on a
Poisson manifold and the pointwise product is deformed inted@pendent associative
product, the star product, such that in zeroth order of Planck’s coristére star product
equals the pointwise product and in the first order the commutator yields i times the Poisson
bracket. The star product is usually considered as a formal power sefiesione ends
up with a formal deformation in the sense of Gerstenhaber [42]. Thus, here the underlying
ground ring is changed fro andC to R[[#]] and C[[4]], respectively. In addition, we
shall always assume that the function 1 is still the unit element with respect to the star
product and that the star product is bidifferential, a feature which is usually fulfilled and has
various important consequences concerning in particular the representation theory [75]. In
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the symplectic case, the existence of star products was first shown by DeWilde and Lecomte
[32], then independently by Fedosov [38,39], who gave a recursive construction, and Omori

et al. [60]. In the more general case of Poisson manifolds Kontsevich has shown this exis-
tence [49]. The classification up to cohomological equivalence is due to Nest and Tsygan

[58,59], Bertelson et al. [11], Deligne [31], Weinstein and Xu [78], and Kontsevich [49].

Common to all the above examples of associative algebras is that they allhrawehu-
tion: this is obvious in the case of a complexified universal enveloping algebra of a real Lie
algebra and for (pseudo-)differential operators, and it can also be achieved by some addi-
tional requirements for star products. Sincafenorm or similar topological structures are
present, we shall investigatealgebras from the algebraic point of view only (see [4,5] fora
related approach). On the other hand, there is a notiposifivityin the underlying ground
ring which is evident fofR, but also the formal power seri@][A]] with real coefficients
is an ordered ring. This positivity can be understood in an ‘asymptotic’ sense which fits
very well into the formal character of the star products. The star products can be understood
heuristically as ‘asymptotic expansions’ of a strict deformation quantization as formulated
by Rieffel [68], see also Landsman’s book [51], even if it is not clear whether such a strict
counterpart exists or not. On the other hand, it is clear from the physical point of view that
the formal character is not sufficient for a reasonable quantization. Thus one has to deal
with the problem of convergence of the formal star products. Starting in the formal frame-
work, this difficult question is usually attacked by considering suitable subalgebras, see, e.g.,
[13,15-17,24-27] and references therein. These investigations provide at leastin some cases
a bridge between formal and strict deformation quantization. This motivates the idea that
the asymptotic point of view in formal deformation quantization already contains most of
the important information needed for quantization. We are then led to the program of finding
‘formal’ or ‘asymptotic’ analogues of various techniques and results knowndtrbmigebra
theory and applying them in a more algebraic framework, as in deformation quantization.
Certainly, this is of great interest if one wants to understand the classical and semi-classical
limits of these constructions but is not necessarily restricted to quantization, as the formal
parameter can correspond to other quantities like a coupling constant [34,35]. One can also
think of investigations of Connes’ non-commutative geometry [29] from the asymptotic
point of view. This all motivates us to considerlgebras over ordered rings in general.

In fact, several interesting results following this program have already been obtained,
starting with the investigation of the GNS construction in the formal case by Bordemann
and Waldmann [20,21]. Here the ordering structure of an ordered ring allows one to define
positive linear functionals df-algebras as in th€*-algebra case which leads to the ana-
logue of the well-known GNS construction'tfepresentations, see, e.g., [22,29,43]. It was
shown in [20,21] that this concept leads to a physically reasonable representation theory for
star products and has been extended and applied to various situations like deformation quan-
tization on cotangent bundles with the presence of a cohomologically non-trivial magnetic
field, i.e. amonopole [15], the WKB approximation [16,17,20], and thermodynamical KMS
states and their representations [18,19] including a formal Tomita—Takesaki theory [75].

In this paper we set up the general framework @&presentations df-algebras over
ordered rings, develop the notions of algebraic Rieffel induction and formal Morita equi-
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valence, and apply our results to deformations-afgebras. In detail, we have obtained the
following results:

In Section 2, we discuss elementary properties of ordered rings, pre-Hilbert spaces,
*-algebras and theirrepresentations, as well as the definition of positive algebra elements
and approximate identities. The concept of-algebra with sufficiently many positive
linear functionals turns out to be important. In this case, one obtains faithful pre-Hilbert
space representations and also nicer algebraic properties, like no non-zero normal nilpotent
elements. Moreover, such algebras are torsion-free, see Proposition 2.8.

In Section 3, we consider bimodules with inner products which take their values in a
*-algebra and use such bimodules to obtain a purely algebraic version of Rieffel induction
in Theorem 3.5. Here everything is analogous to the cage*edigebras except for the
important additional positivity requirement (P) which will be crucial throughout this paper.
We discuss some different and easier-to-use conditions (P1)—(P3) and (PC) which imply
(P), see Lemma 3.1.

Section 4 is devoted to various standard constructions related to Rieffel induction which
we shall need in the sequel. We consider direct sums in Lemma 4.1, tensor products in
Proposition 4.5 and the commutant‘efepresentations in Proposition 4.2. We also discuss
how to use homomorphisms to construct bimodules with the needed inner products, see
Proposition 4.8. Furthermore, we show that the GNS construction of a representation can
be viewed as a particular case of Rieffel induction, see Proposition 4.7.

In Section 5, we develop the notion of an equivalence bimodule for*tatyebras,
which is a bimodule together with two inner products, one for eaalgebra, with some
compatibility properties (see Definition 5.1). TWealgebras are called formally Morita
equivalent if there exists such an equivalence bimodule, see Definition 5.3. We discuss
reflexivity and transitivity properties (Propositions 5.4 and 5.6) of this relation and define
the notion of a non-degenerate equivalence bimodule in Definition 5.9. The existence of
a non-degenerate equivalence bimodule then implies the equivalence of the categories of
strongly non-degeneraterepresentations, see Theorem 5.10. An example using the Grass-
mann algebra shows that the converse is not true in general (Corollary 5.20), as the prop-
erty of having sufficiently many positive linear functionals is preserved by formal Morita
equivalence, see Proposition 5.19. Finally, we consider the question of how to construct a
non-degenerate equivalence bimodule out of an equivalence bimodule in Proposition 5.22.

Section 6 contains the main examples. Firstwe introduce the notion of finite rank operators
on a right module analogous to the compact operators id'thalgebra case and show that
for an equivalence bimodule the first algebra is isomorphic to the finite rank operators on
the equivalence bimodule with respect to the right module structure of the other algebra, see
Proposition 6.1. Next we consider the direct SGff), whereA is an arbitrary index set and
use this as &-right module and as a left module for the finite rank operg@‘*) onC
to show the formal Morita equivalence 6fandg(C) and in particular the formal Morita
equivalence oM, (C) andC in Proposition 6.10 and generalize this to arbitrary pre-Hilbert
spaces in the case of an ordered field (Proposition 6.8). Considering tensor products of
bimodules and the underlyirigalgebras in Proposition 6.9, we arrive in particular at the
formal Morita equivalence of &-algebraA and M,,(A) provided.A has an approximate
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identity, see Proposition 6.7. Finally, we consider full projections in Propositions 6.12 and
6.14.

In Section 7, we specialize to unitaklgebras and prove that formal Morita equivalence
implies Morita equivalence in the sense of unital rings, see Corollary 7.3, and we also show
that the converse is not true in general. As a consequence, we prove that the centers of
formally Morita equivalent-algebras aré&-isomorphic, see Proposition 7.6, and we apply
this result to algebras of smooth functions, see Corollary 7.8. These results shall be used
later in Section 9, in the context of deformation quantization.

In Section 8, we start to set up the framework of formal deformatiorisadjebras and
their*-representations. We consider formal associative deformations which allow in addition
for a deformation of thé-involution. Then the important observation tiRff 1]] is still an
ordered ring ifR is ordered shows that we stay in the same frameworkalfebras over
ordered rings. We discuss deformations of positive linear functionals, positive deformations
of the *-algebras in the sense of [23, Definition 4.1], and deformations of approximate
identities, and consider the corresponding classical limits. Moreover, we define the classical
limit of a pre-Hilbert space oveZ[[A]] and of *-representations, see Lemmas 8.2, 8.3 and
Proposition 8.5.

We continue the discussion of deformations and classical limits in Section 9 by defin-
ing the classical limit of bimodules. We show that the classical limit is a bimodule for the
classical limits of the corresponding algebras of the same type, see Proposition 9.4, and
compute the relation of the corresponding functors of algebraic Rieffel induction in Propo-
sition 9.5. Here the notion of positive deformations becomes crucial. In particular, formal
Morita equivalence of the deformed algebras implies, under some technical assumptions,
formal Morita equivalence of the classical limits, see Theorem 9.7. We conclude that for
Morita equivalent star products, the underlying manifolds have to be diffeomorphic and give
thereby an ‘asymptotic explanation’ why strongly Morita equivalent quantum tori must have
at least the same classical dimension. Finally, we discuss the other direction, namely the
deformation of (equivalence) bimodules with all their relevant structures and present one
basic example using a deformation of-Aaomomorphism in Proposition 9.11.

Section 10 contains a conclusion and several open questions related to our approach. In
Appendix A we collect some elementary properties of positive matrices and in Appendix
B we discuss positive functionals and elements for the algebra of smooth functions on a
manifold.

Notation. The formal parameter will be denoted hyand corresponds in deformation
guantization in convergent situations directlyitdAs we shall need various tensor products
we shall indicate the underlying ring sometimes as an index, but to avoid clumsy notation
we shall omit this whenever possible.

2. Ordered rings, pre-Hilbert spaces and*-algebras

In this section we shall discuss some basic definitions and results on ordered rings as well
as on pre-Hilbert spaces atwhlgebras over such rings, see, e.g., [17,20,21,23], in order to
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find algebraic analogues of the corresponding constructiof$-algebra theory, see, e.g.,
the textbooks [22,29,43,51].

Let R be an associative, commutative ring withA.0 and letP C R. Then(R, P) is
called arordered ringwith positive elementP if R is the disjoint uniolR = —PU{0}UP
and foralla, b € P one hasi+b, ab € P. As usual we define > bifandonlyifa—b € P
and similarly ‘<’, * >’, and ‘<’ which provides an ordering for the rirlg. Thena? > 0 for
alla # 0and hence & 0. MoreoverR is of characteristic zero, sined = 1+---+1 > 0,
andR has no zero divisors. The corresponding quotient fielof R inherits the ordering
structure and becomes an ordered field by defitﬁing: {a/blab € P} and the inclusion
R < R preserves the order.

If R is an ordered ring, we consid€r:= R & iR = R(i), where we endov with the
structure of an associative, commutative ring by requirfng=i —1. This quadratic ring
extension has again characteristic zero and no zero divisors. Elemé&h@éwritten as
z = a+ibwitha,b € R and we can embel < C by a +— a + i0. As in the case of
complex numbers we define the complex conjugatioB oy z = a +ib — z :=a —ib.
Thenz € Cisreal ifz = z which is the case if € R ¢ C. Moreover,zz > 0andzz =0
if and only ifz = 0.

Besides the real and complex numbers the basic example we have in mind is the formal
power series with real and complex coefficients, wigfa.]] is endowed with the canonical
ring ordering by setting = Zf‘;roﬂa, > 0fora # 0if a,, > 0, whererg € Nis the first
index with non-vanishing coefficient. Note that this ordering is non-Archimedian since, e.g.
O<ni<1foralln e N.

Consider an ordered ring and the corresponding quadratic ring extensioand lets)
be aC-module. Amag-, -) : $ x $H — C satisfying

(@,ay +bx) =ald, ¥)+bid. x), (. ¥)=(y.¢), and ($,¢)=0 (2.1)

forall ¢, ¥, x € $anda, b € Cis called asemi-definite Hermitian produéor . If (-, -)
satisfies in addition to the non-degeneracy condition

(0. ¢)=0=¢=0, (2.2)

then (., -) is called aHermitian productand (9, (-, -)) is called apre-Hilbert spaceover

C. Note that we have used the physicists’ convention of linearity in the second argument.
From the non-degeneracy it follows th@tis torsion-free. A linear ma@y/ : $H1 — 92,
where$1 and$,; areC-modules with semi-definite Hermitian products, is callametric

if (Ugp,Uy)2 = (p, )1 forall ¢, € $H1, andunitary if U is isometric and bijective.

As usual we conclude that the inverse of a unitary map is unitary and an isometric map is
automatically injective ify1 and$)2 are pre-Hilbert spaces.

Lemma 2.1. Let$ be aC-module with semi-definite Hermitian product

1. The Cauchy—Schwarz inequality

(. V)P, V) < (. D) (¥, V) (2.3)
holds for allg, ¥ € $.
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2. The spacd¢ € (¢, ¢) = 0} coincides withh := {¢ € HIVyY € H : (¢, ) = 0}
which is aC-submodule ofy. The quotien®y/$+ endowed with the Hermitian product
(o], [¥]) := (¢, ¥) is a pre-Hilbert space oveE.

The proof is as in the case of complex numbers with the only technicality that we have
to use the quotient field® andC to prove (2.3). Nevertheless (2.3) holdsRn see also
[21,75].

As we shall also need the degenerate case in the sequel, we shall now co@sidedale
£ with semi-definite Hermitian produgt, -) more closely. For a gived € End:($)), we
say that there exists an adjoiBte End: () if one has

(9, AY) = (Bo, ¥) (2.4)

forall¢, ¥ € $.Inthis caseB is called aradjointof A. Analogously, one defines adjoints of
mapsA € End: (91, $H2) for two C-moduless 1, H2 with positive semi-definite Hermitian
product. Next we define the spaces (cf., e.g., [75])

B(H) ;= {A € End:($)|A has an adjoirjt (2.5)
J(®) = {N € Endc(9)[imN < 61}, (2.6)

and similarly5 (1, $H2). We obtain immediately the following lemma by a straightforward
computation:

Lemma 2.2. Let $ be aC-module with semi-definite Hermitian product and ¥gtB
$B($H) anda, b € C. Let A*, B* be adjoints of4, B, respectively

1. aA+bB, AB e B($) andaA* + bB*, B*A* are adjoints of aA- bB, AB, respectively

2. For any adjointA* of A one hasA* € 9B($) and A is an adjoint ofA*.

3. 3(H) C B(H) is a two-sided ideal of3(5)). Any adjoint of A is of the formt* + N,
whereA* is a particular adjoint andV € J() is arbitrary.

Next we consider an associative algeldraverC. An involutive antilinear map : A —
A is called & -involutionfor A if forall A, B € A one hagAB)* = B*A*. An associative
algebra oveC equipped with such &involution is called*-algebraoverC. As usual we
defineHermitian normal isometricandunitary elementin A.

Let A be a*-algebra an@d : A — C a linear functional. Thew is calledpositiveif for
all A € Aone has

w(A*A) > 0. (2.7)

If A has in addition a unit element 1 thexis called astateif w is positive andv (1) = 1. It
follows that for every positive linear functional one has the Cauchy—Schwarz inequality
(cf. [21, Lemma 5])

w(A*B) = w(B*A), (2.8)

w(A*B)w(A*B) < w(A*A)w(B*B). (2.9)
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Using the positive linear functionals we can define positivity for algebra elements as well.
We have two reasonable possibilities for such a definition:

Definition 2.3. Let A be a*-algebra oveC = R(i). Then a Hermitian element € A is
called

1. algebraically positive if there exist elememjse .4 and positive numberfs € R, where
i=1,...,nsuchthatA = b1ByB1 + --- + b, B, By,
2. positive if for all positive linear functionals : A — C one hasv(A) > 0.

The set of algebraically positive elements is denotedddy” and the set of positive ele-
ments is denoted by ™.

In principle there is still another possibility as we are dealing with rings: we 4all
weakly algebraically positivéf there is a positivep € R such thatpA is algebraically
positive. But this coincides with algebraic positivity as soon as we pass to the quotient
fields. Clearly an algebraically positive element is positive whedAteg < A™, but the
converse is not true in general. Nevertheless, ifi*aalgebra overC, both notions are
known to coincide since here any positive element has a unique positive square root.
As a first example of &-algebra overC and the corresponding positive elements we
mention thern x n-matricesM,,(C) as discussed in Appendix A. Moreover, we show
in Appendix B that this definition yields the expected result for smooth functions on a
manifold.

As in C*-algebra theory, we use the positive elemedtsto endow the Hermitian el-
ements with the structure of a half ordering by definihng> B if A — B € AT, where
A, B are Hermitian. In addition, we have the following characterizatiomof and.A™
analogously to the well-known case ©f-algebras, see, e.g., [22].

Lemma 2.4. Let A be a*-algebra overC. ThenA*" and A" are convex cones, i.e. for
A, B € AT (resp.AT) anda, b > 0 we have aA- bB e AT+ (resp..A™). Furthermore,
for any positive linear functionab and anyC € A the functionakwc : A +— o (C*AC) is
positive and thug€* AT+C € AT+ aswell asC*ATC € AT.

Let us now introduce the notion of an approximate identity motivated by the usual
C*-algebra theory. Consider a directed $ei.e. a partially ordered st such that for
eacha, 8 € I there exists & € I such thaty > «, 8. As we have no a priori notion of
convergence we have to rely on the following algebraic definition{Egt,; be a set of
elementsE, = E} € Asuchthatforall < g we haveE, = E,Eg = EgE,. Moreover,
let A be filtered by subspace4, also indexed by, i.e. for alle < 8 one has4d, € Ag
and A = (J,¢; A Finally, assume that for alk € A, one hasA = E,A = AE,. In
this casg Ay, Eq}acr is called arapproximate identitjor 4. Note that we do not require
Eg = E, nor E, € A,. In the following, we mainly considef-algebras which admit
such an approximate identity. JA has a unit element then cleady, 1} is an approxi-
mate identity. A less trivial example, and our main motivation, is giverCgy(M), the
algebra of complex-valued functions with compact support on a non-compact manifold



316 H. Bursztyn, S. Waldmann/Journal of Geometry and Physics 37 (2001) 307-364

(see Section 8). Using the Cauchy—Schwarz inequality one easily obtains the following
lemma:

Lemma 2.5. Let A be a*-algebra overC with approximate identityA,, Ey}oer and let
o . A — C be a positive linear functional. Then is real, i.e.w(A*) = w(A) for all
A € A. Moreover, if for somer € I one haso(E2) = 0thenw]| 4, = 0.

Let us now discuss some notions concerniAgpresentations of &algebra ovelC.
From Lemma 2.2, we observe that for a pre-Hilbert spgoaver C, the algebraB ()
is also a*-algebra since any element € B($)) has auniqueadjoint A* and the map
A +— A* is obviously a*-involution. Then &a*-representationr of a *-algebra.A on $
is a*-homomorphismr : A — B($), i.e. a linear map such that(AB) = 7 (A)r(B)
andr(A*) = w(A)*. As usual,r is calledfaithful if 7 is injective, andhon-degenerate
if 7(A)¢ = 0 for all A implies¢ = 0. It follows that if A has a unit element then
7 is non-degenerate if and only if(1) = id. We shall also make use of the following
definition; a*-representatiom is calledstrongly non-degeneraté the C-linear span of
all vectors of the formr(A)¢ with A € A and¢ € $ coincides with the whole space
9. If A has a unit element, then clearly non-degeneracy and strong non-degeneracy are
equivalent. In general, strong non-degeneracy implies non-degeneracy sincé)fis
strongly non-degenerate agde $) is a vector such that(A)¢ = 0 for all A € A then
(¥, m(A)g) = (m(A*)yr, ¢) = 0 for all v € . But then we can chosg; and; such
that) ", 7(A")¥; = ¢ due to the strong non-degeneracy, whesce- 0 follows. Thus
(7, $) is also non-degenerate. Note that in the case’ofepresentation of @*-algebra
non-degeneracy implies that the span ofmll)¢ is dense in the Hilbert spacg In the
following, the strongly non-degenerate case will be the most important one. Moreover,
7 is calledcyclic with cyclic vectors2 € $) if for all ¢ € $ there is aA € A such that
¥ = w(A)£2.Ifany non-zero vector iy is cyclic thenr is calledtransitive The pre-Hilbert
spaces) is calledfilteredif there is a directed sdtand subspace$),}q<; Of $ such that
Na € Hp fora < pand$H = (U, 9. Then the representationis calledcompatible
with the filtrationif 7 (A)$H, < $H, for all « € I. Finally, we callx pseudo-cyclidf $
is filtered and each subspagg of the filtration is cyclic forzr with cyclic vectors2,. In
this cas€£2,}qcs are called thepseudo-cyclic vectorsf . Note thatr is not assumed to
be compatible with the filtration. If one hdsrepresentations ) for i e I on pre-Hilbert
space®)”) then they induce arepresentation on the direct orthogonal sum= @;<;$H®
in the usual way. Ifr has no non-trivial invariant subspace thers calledirreducible
If 7 is a direct orthogonal sum of pseudo-cyclicepresentations afl thenr is clearly
strongly non-degenerate.

Our main motivation to consider pseudo-cyclic representations is the faaf§hav/)
acts in a pseudo-cyclic way on itself (by left-multiplication) but there is no cyclic vector if
M is non-compact.

Let 71 andm, be two*-representations ol on $1 and $», respectively, and leT" :
H1 — $H2 be alinear map. Thef is called anintertwinerif 72(A)T = Tw1(A) for all
A € A. We are mainly interested isometri¢ adjointable or unitary intertwiners. Ifry
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is a*-representation afd on $1 andT is a unitary magl’ : 1 — 92 thenma(A) =
Tw1(A)T 1 defines & -representation oy, and if for two*-representations there exists
such a unitary intertwiner then these representations are cadleatily equivalent

To study the'-representations ¢falgebras, we consider the following categories. Denote
by *-Rep(A) the category of-representations afl on pre-Hilbert spaces ovel with
isometric (or adjointable, or unitary) intertwiners as morphisms. Since we shall mainly
be interested in strongly non-degener&teepresentations of-algebras, we denote by
*-Rep(A) the category of strongly hon-degener&tepresentations oAl.

Let us now briefly recall the algebraic GNS constructiofi-oépresentations using posi-
tive functionals, as discussed in detail in [20,21p If A — Cisapositive linear functional,
the spaceg7, defined by

Jo ={A e Alw(A*A) =0} C A (2.10)

is a left ideal called th&el'fand idealof w. The quotient,, := A/J,, carries a Hermi-
tian product defined bity 4, ¥g) := w(A*B), wherey 4, ¥ € 9, denote the equivalence
classesofi, B € A, respectively. Sincg,, is aleftideal 9, is aA-left module which gives
rise to theGNS representation,, defined byr,(A)yp = ¥as. A straightforward com-
putation showsr,(A) € B(H,,) andr,(A*) = 7, (A)* whencer,, is a*-representation.

Now assume in addition thad has an approximate identityd,, Ey}oc; and define
oo = 1,(A)YE, for a € I. By definition$,, o is a subspace o, which is cyclic for
7, With cyclic vectory g, , though it may happen thag,, , = {0} for somex. Moreover,
one immediately verifies tha, o S Hwp fora < g and9H, = Jye;Hw.o- Thusm,
is pseudo-cyclic with pseudo-cyclic vectdrgg, }oer. Finally, note thatr,, is compatible
with this filtration and clearly

(VE, Tw(A)VE,) = w(EAEy) (2.11)

foralla € I andA € A. Onthe other hand, the GNS representation is already characterized
by this property.

Lemma 2.6. Let {Ay, Ey}ocs be an approximate identity o andw : A — C a posi-
tive linear functional. Ifz is a pseudo-cyclic-representation o) = |J,.; 9o With
pseudo-cyclic vector®,, (same index set, but som, may be zerpwhich is compatible
with the filtration such that$2,, 7 (A)2,) = w(E,AE,) forall @« € I andA € A, then
7 is unitarily equivalent to the GNS representatiop by the filtration preserving unitary
map

U:Hoa3r,(A)YE, = T(A)S2¢ € Ha. (2.12)

The proof is a straightforward verification using only the definitions. Note that in particular
U mapsy g, to £2,. Note also that a GNS representation of-algebra which has an
approximate identity is always strongly non-degenerate and thus non-degenerate. This is a
main reason why we are interested#Rep(A).

The following additional property of &algebra provides son&*-algebra-like features
concerning Hermitian elements and faithfulepresentations.
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Definition 2.7. Let A be a*-algebra oveC. ThenA has sufficiently many positive linear
functionals if for any non-zero Hermitian elemdithere exists a positive linear functional
of A such thato (H) # 0.

Proposition 2.8. Let A be a*-algebra overC with an approximate identity. Then the
following conditions are equivalent:

1. A has sufficiently many positive linear functionals
2. For any non-zero Hermitian elemeht € A there exists &-representationr of A with
7 (H) # 0.
3. There exists a faithfui-representation of4.
In this case the following properties are also fulfilled:
4. Iffor A € Aone hasd*A = 0thenA = 0.
. There are no non-zero nilpotent normal elementslin
6. Ais torsion-free, i.e. zA= 0for 0 # z € Cand A € A impliesA = 0.

)]

Proof. Assume (1) and let ¢ H € A be Hermitian and letx € I be an index of the
approximate identity such thatE, = H = E, H and choose a positive linear functional
with w(H) # 0. Thenw (H) = w(E4HEy) = (Y, , T (H)VE, ) Shows thatr, (H) # 0

in the GNS representation correspondingtproving (2). Assume (2), then the orthogonal
sum over all GNS representationss faithful: it is clear thatr (H) % 0 for H # 0 if H

is Hermitian or anti-Hermitian. Le#t # 0 be not anti-Hermitian. TheA + A* # 0 and
thusm (A + A*) # 0 sinceA + A* is Hermitian. Thusr(A) = 7w (A*)* is also non-zero
proving (3). Finally, letr be a faithful*-representation. Thus it is sufficient to prove (1)
for (a*-subalgebra of¥8 () for an arbitrary pre-Hilbert spac®. Let H = H* € B($)

be such that for aliy € $ we have(yr, Hy) = 0. Then by the usual polarization argument
and the fact that 24 0 in R we conclude(y, H¢) = 0 for all ¥, ¢ € $. Hence, by the
non-degeneracy of the Hermitian produét,= 0 follows. Thus for a non-zero Hermitian

H € B($) there exists a vectoy € § with (, HY) # 0. ThenA — (¥, Ay) is

the desired positive linear functional proving the equivalence of the first three properties.
Now assume that they are fulfilled. Then (4) follows immediately from the fact that one
has a faithful*-representation. Now lekl # 0 be Hermitian andt, as above and a
positive linear functional withw(H) # 0. By the Cauchy—Schwarz inequality we have
w(H)w(H) < w(E2)w(H?) whencew(H?) # 0. By induction we conclude th#?' # 0

and thusH cannot be nilpotent. This proves (5) for Hermitian elements. Together with (4),
it also follows for normal elements. Finally, for (6) pass to a faittffuepresentation and
take expectation values. O

Corollary 2.9. LetAbe a*-algebra ovelC with sufficiently many positive linear functionals
and approximate identity, and let € A. If w(A) = 0 for all positive linear functionals
thenA = 0.

Proof. Thisfollows since A can be written as complex linear combination of the Hermitian
elementsA + A* and (A — A™). O
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We shall see examples féralgebras with sufficiently many positive linear functionals
later in this work and refer also to the (counter-)examples in [23, Section 2].

3. Bimodules and algebraic Rieffel induction

Now we want to transfer the usual construction of induced representations using Rieffel
induction (see [65] and, e.g., the textbook [51]) from the settinga&lgebras to the more
algebraic framework of-algebras over ordered rings.

Let.A, B be two*-algebras ove€ = R(i), whereR is an ordered ring. Then we consider
a (B-A)-bimodulegX 4, i.e. aC-module endowed with 8-left actionLz and a.A-right
actionR 4 written as

Lg:B— Endc (X 4) < A: R4, (3.1)

such that the left action with elements3rand the right action with elementsificommute.
We sometimes omit the explicit use of the mapsandR 4 and simply writeB - x and
x - A, respectively, wherd € A, B € Bandx € gX 4.

As an additional structure we consider a positive semi-defiitealued inner product
(a ‘rigging map’) ongX 4 which is a map

(A BXaA X XA — A, (3.2)
satisfying the following defining properties

(X1) (x, ay+ b a4 =alx, y)a+b(x,2)4

(X2) (x, = (y, x)A,

(X3) <x > = (x, y) AA,

(X4) (x,x)4 > 0,

foralla,b € C, A € Aandx, y, z € gX 4. The positivity requirement can be sharpened in
two directions: we consider the following algebraic positivity

(X4a) (x,x) 4 € AT,
and the positive definiteness conditions

(X4) (x,x) 4 > 0and(x, x) 4 = 0 impliesx = 0,

(X44d) (x,x) 4 € AT and(x, x) 4 = 0 impliesx = 0,
forall x € gX 4. For most of our applications, (X4) will turn out to be sufficient and clearly
(X4d) implies (X4a) as well as (X%, and (X4a) as well as (X#imply (X4). Besides these
axioms for theA-valued inner product, we shall need a compatibility of the inner product
with the B-left action ongX 4 which motivates the requirement

(X8) (x, B-y)a=(B*-x,y)4

forall x, y e gX 4 andB € B. For later use, we shall also mention the followfngness
condition

(X6)A = C-span{(x, y) 4lx,y € X 4},
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which will guarantee the non-triviality of the constructions that follow. In the usiial
algebra approach, one only demands that the span of all inner prddugjs, is dense in
A but as we do not have any topologies we have to demand (X6).

Now we have all the requisites to describe the algebraic Rieffel induction following
almost literally the construction known fro@i-algebras. We start with*arepresentation
7 4 of Aon$) and assume we have a bimodglE 4 satisfying the axioms (X1)—(X5). Then
we shall construct &representation aB. To this end we consider th@module

Ri= pXA®49, (3.3)

where the A-balanced’ tensor produc 4 is defined by using the right action of on
BX 4 and the left representationy on $, i.e. we consider the tensor prodyX 4 ®c $
and the subspac¥ spanned by elements of the foom A ® v — x ® m4(A)¥. Then
& 1= X4 ®c H/N. In other words we identifyc - A ® ¥ with x ® 7 4(A)y for all
x epXg, A e A andy € 9. Then$ carries a canonica-left action which we shall
denote byzg given by

TB(B)(x @ ¥) := (Lg(B)x) @ ¥ = (B - x) Q ¥ (3.4)

Note that this is indeed well-defined @hsincel 5 andR 4 commute. Moreover, sindez

is aB-representation it follows thaiz is also aB-representation. Next we want to equip
& with the structure of a positive semi-definite Hermitian product. Following the usual
construction we definefor @ v, y ® ¢ € &

@Y, y®) g = (¥, malx, y) D) g (3.5)

and extend this by linearity in the second and antilinearity in the first argument to an inner
product onzX 4 ®c $. A simple computation shows théat -) = is indeed well-defined on

K. Moreover, the inner product, ) enjoys the symmetry property

@Y YO = BBV,

as an easy computation shows. Next we consider the compatibifity pf with 73. Letx ®
¥, y®¢ € Rbe elementary tensors aBde B. Then an easy computation using (X5) shows

(x @Y, 7B(B)y @ ¢z = (TB(BHx @Y, y @ ¢) 5. (3.6)

By linearity it follows that7(B*) is an adjoint oftg(B).

It remains to prove that, -) ; is positive semi-definite. First notice that for glle ) the
linear functionald — (Y, m4(A)¥)g is a positive linear functional od. Thus we obtain
for elementary tensors® ¥ € &

(XY x@VY)z = (V. mallx, x) V)5 =0, (3.7

since by (X4) the algebraelemént x) 4 € Ais positive. Note that our definition of positive
algebra elements comes in crucially in this context. Thaugh, is positive on the elemen-
tary tensors itk, we cannot a priori guarantee the positivity for arbitrary elements of the form
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X114+ - -4+x, Y, € £. Inthe case of *-algebras one uses the factthata non-degenerate
*-representation is the direct orthogonal sum of cyclic representations. Thus any element
in & can be written as an orthogonal sum of elementary tensors and the positivity is easily
established, see, e.g., [51, Chapter VI, Section 2.2] or [64, Proposition 2.64].

As *-representations in our setting might not satisfy this condition in general, we have
to impose additional properties of the bimodgl& 4 which are sufficient to guarantee the
positivity of (-, -) z. We define the following property:

(P) The inner product, -) 5 is positive semi-definite for all representatianis 7 4) of A.

We list conditions which will imply this property, but remark that there are situations
where the positivity can be proven by other methods, see, e.g., the next section.

(PL) X4 = ®ics XD andx® L xU) foralli # j e I with respect td:, -) 4.

(P2) TheA-right actionR 4 preserves this direct sum.

(P3) Eachx ¥ is pseudo-cyclic foR 4 with directed filtered submodulé) = J,, ;o X5
and pseudo-cyclic vecto(s‘éf).

We also define a slightly weaker form of pseudo-cyclicity for the bimodule:

(PC) XA = Y ;; XV with orthogonalC-submodulest® for i # j with respect to
(.-).4 such that eact” is pseudo-cyclic foR 4 with directed filtered submodules
2O =, ;0 X and pseudo-cyclic vecto”.

Note that for (PC) we do not require the sum decomposition to be direct §ingg may
be degenerate and moreover, we do not require the sum decomposition or the filtrations to
be compatible witR 4.

Lemma 3.1. (P1)—(P3 = (PO = (P).

Proof. The first implication is obvious so let us prove the second. (§etr 4) be a
*_representation ofd and conside® =5 X4 ® 4 9. Define &Y = x© ® 4 $ which
is aC-submodule off for all i € I and clearlyy",_, 87 = & though the sum may not
be direct. Even if the sum decomposition g€ 4 were direct, the identifications in the
A-balanced tensor product could make the sum decompositi@moh-direct. Neverthe-
less they are orthogonal as one immediately can verify using (PC). To show,that
is positive semi-definite we may restrict & for fixed i due to their orthogonality. Let
x@D = xf)®¢1+- 41D @, with x,ﬁi) e XD andgy € Hfork =1,...,n. Thenthereis

aa € IV suchthar!”, ..., x\ € x andhence wefinds, ..., A, € Asuchthat’ =
Q- Afork=1,....n. Thusy® = ) @ ¢ with ¢ = TA(AD$1+ -+ 7A(An)r.
Hence by (3.7) the positivityx ), x )z > 0 easily follows, proving (P). O

Nevertheless, in most of our examples we shall deal with (P1)—(P3) and not with (PC). We
shall even encounter situations where we can prove (P) directly without (P1)—(P3) or (PC).
Taking (P1)—(P3) or (PC) as an example of how to guarantee (P), we investigate now the con-
sequences of (P) in general. The following technical remark will be useful in a few situations.
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Lemma 3.2. Assume X 4 satisfiegP)and let) be aC-module with positive semi-definite
Hermitian product and a representation gf by adjointable operators. Then the inner
product defined by3.5)on X 4 ® 4 $ is positive semi-definite

Proof. This is a simple consequence of (P) obtained by passing to the pre-Hilbert space
/9t O

Under the assumption thgf 4 satisfies (P) we obtain a positive semi-definite Hermitian
product fork. Moreover7z(B) € B(R) due to (3.6) for alB € . Nevertheless the inner
product(-, -) » may be degenerate and thus we have to quotient out the vectors of length
zero. Hence we define

A= R/R, (3.8)

which is now a pre-Hilbert space ov&. The following simple lemma ensures that we
obtain a*-representation aB on f:

Lemma 3.3. Let$) be aC-module with semi-definite Hermitian product andiet /6.

1. The algebraB($)/J3(H) has a canonicat-involution given bjA]* := [A*], whereA*
is an adjoint ofA € B(§).

2. The mapB(9)/3(9) > [A] — (¥] — [AY¥] € ) € B(H) is an injective*-homo-
morphism

From this lemma and (3.6) we conclude that the representagiasf 5 on & passes to the

guotientf and yields &-representatiotrz of B on & given on elementary tensors by

meB)x @] :=[78(B)x @ ¥)] =[B-x® Y] (3.9)

for B € Bandx ® ¥ € & We shall callrz the induced representationf B and the
above construction shall be called thgebraic Rieffel inductioin analogy to the Rieffel
induction in the theory o€*-algebras.

Proposition 3.4. Let A, B be *-algebras overC and zX 4 a (B-.A)-bimodule satisfying
(X21)—(X5) and (P). Then for any*-representationr 4 on a pre-Hilbert space) the space
R =pX4 ®4 H carries aB-representationi and a positive semi-definite Hermitian
product which induce &-representationrz of 3 on the pre-Hilbert spac& := &/#+.

To complete the construction of induced representations we have to check whether the
above construction is functorial. This can be done as irCthalgebra case. Lé#1, nfj))

and($2, nff)) be two*-representations ofl and letU : $1 — $2 be an intertwiner. Then
we defineV : &1 — Ko by

Vax®y) =xUy (3.10)

forx®y € pX_4® 4 %1 and extend this by linearity. First note tHats indeed well-defined
sinceU is an intertwiner. Moreover, we clearly have for 8lle B
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7 (=D _ = 7
Vg (B)Yx®Y) ) =a5(B)|Vx®Y)), (3.11)

whenceV is an intertwiner from?g) to ﬁg). If we assume in addition that is an isometric
intertwiner, then a simple computation shows that &1 — R is also isometric. Thus
V passes to the quotients and yields an isometric fnapR; — K2 which now is an
isometric intertwiner fromr(Bl) to n(BZ). Analogously, ifU is an intertwiner with adjoint,
thenV also has an adjoint and passes to the quotient as an adjoimtalile conclude that
the algebraic Rieffel induction is indeed functorial in the categofi@presentations with
isometric or adjointable intertwiners. Moreover, we emphasize tliatsfunitary thenV is
unitary as well. For a given bimoduieX 4 which satisfies (X1)—(X5) and (P) we denote the
correspondindunctorby Ry *-rep(A) —*-rep(B), whereRy : (9, 74) — RxH =

R, Ry :=np)andRyx : U — RxU =V as above.

Theorem 3.5. Let A, B be *-algebras overC. Then any(B-.A4)-bimodulegX 4 which
satisfiegX1)—(X5) and (P) yields a functofRy :*-rep(A) —*-rep().

Let us finally discuss the following non-degeneracy properties of the Rieffel induction: as
for the case of-representations we call the left-action®én g X 4 strongly non-degenerate
if the C-span of allB - x with B € Bandx € gX 4 coincides with the whole spaggx 4, and
analogously for thed-right action. Then a straightforward computation yields the following
result:

Proposition 3.6. Let A, 5 be*-algebras ovelC andgX 4 a bimodule satisfyingX1)—(X5)
and (P). If in addition theB-left actionLz on gX 4 is strongly non-degenerate then the
functor®Rx maps*-rep(A) into *-Rep(B).

Remark 3.7. If the bimodulegX 4 satisfies(P1)—(P3)then the right-actiorR 4 of A is
automatically strongly non-degenerate

4. Properties of the algebraic Rieffel induction

This section shall be dedicated to some standard constructions and first results on the
algebraic Rieffel induction, most of which have their analogues in the the@r-afgebras.

First we shall consider the behavioridf: with respect to direct sums of representations.
Let {H©, nfjl)},-e[ be*-representations ofl and let$) := ®,;;H® be endowed with the

*-representatiom 4 1= @ie,nﬁ). Then canonically

R=pBXAQ4H= @I BXA @4 HD = &3 RO, (4.1)
IAS

iel

since the representationy preserves the orthogonal sum decompositiofy dfioreover,
R® and &) are orthogonal foi # j whence (4.1) is an orthogonal decomposition of
£. Note also thafip preserves this direct sum ang| z,, = ﬁg) for all i € I whence



324 H. Bursztyn, S. Waldmann/Journal of Geometry and Physics 37 (2001) 307-364

g = @ielﬁg). Finally, as this direct sum is orthogonal, the decompositions afd
induce a corresponding decompositiondindrz. Thus we have the following lemma:

Lemma 4.1. Let A, B be *-algebras ovelC and X 4 a bimodule satisfyingX1)—(X5)
and(P). Then canonically

R (@ﬁ(”, Eanf) =~ (elmxﬁ“), e]mnﬁi)) (4.2)
le le

iel iel
for any*-representation$$H®, ”,(i)}iel of A.

Note that it still may happen thétx (9, 7 4) is trivial since we have not yetimposed any
non-triviality conditions on the bimodulgX 4 such as the fullness condition (X6) or the
strong non-degeneracy bj. Nevertheless, the above lemma is very useful for questions
of irreducibility of the induced representations.

On the other hand, it was argued in [75] that the question of whether a representation is
irreducible or not is from the physical point of view in deformation quantization sometimes
notthe mostimportant one, and the question of whethecdinemutanbof the representation
is trivial or not leads to physically more reasonable characterizations of the representations.
Though both concepts are known to coincide in the cagg*edlgebras, this need not be
true in the general case $falgebras over ordered rings, see [75] for examples. Thus we
consider for &-representation 4 of A on $ the commutant

TA(A) = {C € BH)IVA € A: CrA(A) = mA(A)C} (4.3)

within B($). Clearlyr 4 (A)’ is a*-subalgebra oB (£) and we have 4(A) € 7 4(A)" and
7 A(A)" = m4(A) as usual. LeB8 andzX 4 be given as above and consider w4 (A)’.
Then we defingx(C) : & — & by

Dx(O)x@Y) :=x®CY (4.4)

for elementary tensors and extend this by linearity. Cledry(C) is well-defined since
C € m4(A). Moreover, sinc& € B(9H) we have an adjoin€* of C and thus it follows
easily thatéy(C*) is an adjoint ofdx(C). Thus we conclude thaby(C) € B(K). By
Lemma 3.3 it follows that®y(C) and &% (C*) pass both to the quotiert and yield
@x(C), Px(C*) € B(R) which are adjoints of each other. Note finally théjg(C) is
clearly in the commutant ot (8) and thusd«(C) is in the commutant ofz(5). A last
easy check shows that the map— @4 (C) is a*-homomorphism ofr 4(A)’ intorp(B)’.
We summarize the result in the following proposition:

Proposition 4.2. Let A, B be*-algebras oveC andpX 4 a bimodule satisfyingX1)—(X5)
and (P). Then the functofRy yields a*-homomorphisn®y : 7 4(A) — (Rxma)(B))
for all *-representationg$), 7 4).

Let us now investigate the relation between the algebraic Rieffel induction and ten-
sor products of‘-algebras. IfA; and . A, are*-algebras oveC then the tensor product
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A= A1 ® Ay (taken overC) is again an associative algebra o@rand by setting
(A1® A2)* = A] ® A3, (4.5)

we clearly obtain &-involution for 4 whenceA becomes &-algebra oveC.

Lemma 4.3. Let A;, A, be*-algebras oveC and A = A; ® A their tensor product

1. IfA; ¢ A_lH_ andA; e A_ZH_ thenA1 ® A € AT,
2. Ifw1: A1 — C, w2 : A2 — C are positive linear functionals them; ® wy : A — C
is a positive linear functional

Proof. The first part is trivial. For the second part considéi"r) € Ay, A(Zi) e Ay with
i=1...,n Then

*
01 ® w2 (ZA‘;’)@AS)) Y aP @Ay | | = MmN,
i j

where the matriced, N € M, (C) are defined by their matrix elemerig; := a)l((A(li))*

A(lj)) and Njj = wz((A(zj))*A(zi)). ThenM and N are Hermitian and positive since for
v € C" and one clearly ha&, Mv) = w1(A*A) > 0, whereA = le(ll) 4+ 4 v,,A(l”)
and analogously fol. Then ttMN) > 0 by Corollary A.5. O

Remark 4.4. Though the tensor product of positive functionals and the tensor product of
algebraically positive elements afelgebraically) positive, in the more general case of
positive elementd; € Af, Ao € A;’ there seems to be no simple answer to the question
of whetherd; ® A, € A™. The reason is that in order to establish positivity for ® A»

one has to testi; ® A on all positive linear functionals ofl and not only on the positive
linear combinations of factoring ones

Consider nowf-algebrasA;, Az, B1, B2 and bimoduleg, X 4, andp, X 4, out of which
we want to construct a3-A)-bimodulezX 4 whereA := A1 ® Az andB = B1 ® Ba.
To this end we segX 4 ‘= p, X4, ® B,X4, Which becomes ali-A)-bimodule in the
usual way. Assume furthermore thatX 4, andg,X 4, are endowed with4;-valued and
Ap-valued inner products, respectively, such that (X1)—(X3) are fulfilled. Then we define
an A-valued inner product fog X 4 by (anti-)linear extension of

(x®y, X' @y)a = (x,x") 4, ® (y,Y) 4, (4.6)

Clearly, (X1)—(X3) are also satisfied fdr, -) 4 as an easy computation shows. Moreover,
if both inner products., -) 4, and(-, -) 4, satisfy (X5) ther, -) 4 satisfies (X5), too. The
same is true for the fullness condition (X6).

It remains to check the positivity df, -) 4 under some positivity assumption for-) 4,
and(-, -) 4,. Due to Remark 4.4, one expects this task to be more complicated in general.
Nevertheless we can prove the following proposition:
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Proposition 4.5. Let Ay, A, B1, B> be *-algebras overC and letp, X 4, and 5, X 4,
be corresponding bimodules. Then we have for= A1 ® A2, B := B1 ® B2 and
BXA =B, XA,Q B, XA,

1. X 4 is a(B-A)-bimodule

2. If g, X 4, and 3,X 4, are endowed with4;-valued andA2-valued inner products, re-
spectively, satisfyingX1)—(X3) then zX 4 also carries a canonicald-valued inner
product which satisfie€<1)—(X3).

3. If in addition to(2) the inner productg-, -) 4, and (-, -) 4, satisfy(X5) then(, -) 4 also
satisfiegX5). The same holds fiX6).

4. If in addition to(2) the bimodulegs, X 4, and 5, X 4, satisfy(X4a)and(P1)—(P3)}hen
BX 4 also satisfiegX4a)and(P1)—(P3).

Proof. It remains to check the last part. It is straightforward to verify gty satisfies
(P1)—(P3) with the canonically induced direct sum and the corresponding tensor products
of the pseudo-cyclic vectors as pseudo-cyclic vectors for the Cartesian product of the cor-
responding index sets. Using the pseudo-cyclicity as well as (X4a) for each of the given
bimodules one finally verifies (X4a) for the new bimod@#& 4 by a lengthy but easy
computation. O

Although there may be more general situations, where the tensor product of two such
bimodules with inner products yields a bimodule for the corresponding tensor product of
the*-algebras, the above construction turns out to be quite useful in Section 6.

Next we shall mention the connection between algebraic Rieffel induction and the GNS
construction. Again we follow the well-known situation as(ifi-algebra theory, see, e.g.,
[51, Chapter IV, Section 2.2].

Letw : A — C be a positive linear functional of &algebraA over C. We regard
A = 4 Ac as anA-left module and as &-right module using the left-multiplication by
elements ofA on itself and the scalar multiplication by elementsGn Then we con-
sider (-, }: 4Acx 4Ac — C defined by(A, B), := w(A*B). It follows immediately
that (-, -),, is aC-valued inner product foy.Ac which satisfies (X1)—(X5). On the other
hand (P1)—(P3) araot necessarily fulfilled. Nevertheless in this case we can prove (P)
directly.

Lemma 4.6. Let A be a*-algebra overC andw : A — C a positive linear functional.
Then thg.A-C)-bimodule4.Ac endowed with the inner produgt -),, induced by» satisfies
(X1)—(X5) and (P).

Proof. The verification of (X1)—(X5) is trivial. Thus it remains to show (P). First notice
that any*-representatiomc of C on a pre-Hilbert spac§ is of the formnc(z) = zP,
where P = 7 (1) is a Hermitian projection, and also that any such projection yields a
*-representation of. Considem®® = A ®” $), where the tensor product is now constructed
usingz. Moreover, letyq, ..., ¥, € $ andAzy, ..., A, € A. Using thatP? = P = P*,
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we then have

<ZA1' ® Vi, ZA]‘ ® 1/fj> = Zw(A?‘Aj)(P%, Pyj)g = tr(MN),
i J g

whereM, N € M, (C) are defined by := w(A7A;) andNjj := (Pyj, Pyi)g. Asin
the proof of Lemma 4.3 we notice that as well asV are Hermitian and positive, whence
tr(MN) > 0 by Corollary A.5. Thus (P) is shown. O

In order to obtain the GNS representatignof .4 as an induced representation we take a
particular-representation df, namely the'-representation by left-multiplications Gfon
itself, where the inner product is given kg, w) = zw. Thus in this cas& = A® C = A
and(A, B)z = w(A*B) canonically. Hence

At ={Ac AwB*A)=0VBec A} =T,

coincides with the Gel'fand ideal and thiis= &/&L = §,, is the correct GNS repre-
sentation space. Furthermore it is easy to see that in this case the induced representation
7 4 coincides with the GNS representatiag. Thus as inC*-algebra theory the GNS
construction is a particular case of Rieffel induction.

Proposition 4.7. Let A be a*-algebra ovelIC andw : A — C a positive linear functional.
Then the GNS representatiagp coincides with the representation which is Rieffel induced
out of the canonicaC-representation on itself by means of (b& C)-bimodule 4 A¢ with
inner product given by.

Finally, let us mention the following construction of a bimodule outttedmomorphism
@ B — A We setgX 4 = ¢(5)A4 With the usualA-right action on itself and th8-left
action given by?, i.e.Lg(B)A := @ (B)A. The . A-valued inner product is defined to be

(A, A') 4 1= A*A/, (4.7)

and it is easily verified that, -) 4 satisfies (X1)—(X3), (X4a), as well as (X5) singeis a
*-homomorphism. Moreover, we can verify (P) directly: (&t = 4) be a*-representation
of Aandlety, ..., ¥, € HandAq, ..., A, € Athen

Y (Ai® V. Aj® V)5 = <ZnA<Ai)wi, Zm(A,-)w,-> >0
i,j i J 9
clearly shows (P). Moreover, ifl has even an approximate identigfly, Eq}ecr then
(P1)—(P3) are also fulfilled using the, as pseudo-cyclic vectors. Obviously, in this case
(X6) is also satisfied.

Proposition 4.8. Let A, B be*-algebras oveC and let® : B — A be a*-homomorphism.
ThengX 4 = o) A4 is a (B-A)-bimodule with canonicall-valued inner product satisfy-
ing (X1)—(X3), (X4a), (X5)and(P).If A has in addition an approximate identity thexe6)
and(P1)—(P3)are also fulfilled
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If we assumeA to have an approximate identity andto be a strongly non-degenerate
*-representation of4, then the induced representation in Proposition 4.8 is canonically
equivalent to the pull-back representationdy

5. Equivalence bimodules and formal Morita equivalence

Given. A andB *-algebras ove€, we saw previously how to construct dunctor Ry :
*-rep(A) — *-rep(B) associated to a3-A)-bimodulegX 4 (equipped with some extra
structure). In this section, we will be concerned with the question of how to define bimodules
that give rise to equivalence of categories.

First note that to each giverB{A)-bimodule zX 4, there naturally corresponds an
(A-B)-bimodule 4 X3, defined as in the theory @f*-algebras (see [64,65]). We [&tbe the
C-module conjugate t&: as an additive group, we hase= ¥, butif = : ¥ - X,x — X
denotes the identity map, we define the scalar multiplicatioX by ax = ax, a € C. We
then define a leffd-action and a righB-action onX by

Ax = XA, X¥B =B*x for Ac A, BeB.

If (-, -5 is a positive semi-definitB-valued inner product on X satisfying (X1)—(X5)
and (P), then we can consider the corresponding furidter: *-rep(B) — *-rep(A),
which is a natural candidate for the inversed®$. Observe that the existence of such a
(-, yp is equivalent to the existence of a positive semi-defiiitealued inner product on
BX 4, defined by (x, y) = (X, ), x, y € gX 4 satisfying:

(Y1) B(aX+ by, z) = ap(x, z) + bp(y, 2),
(Y2) p(x, By, x)*,

(Y3)B(B > Bg(x, y),

(Y4) glx, x

(YS) g{x - A y> B{x,y - A*)

forallx,y,zepX4,a,beC,A e AandB € B. Itis also clear that:, -) g satisfies (X6)
if and only if g(-, -) satisfies:

(Y6) B = C-sparig(x, y)|x, y € sX 4},

also observe that, -) satisfies (X4a), (X4 and (X44) if and only if g(-, -) satisfies the
corresponding conditions:

(Y4a)g(x,x) e BT,
(Y4) g(x, x) > 0 andg(x, x) = 0 impliesx = 0,
(Y4d) g(x,x) € B¥T andg(x, x) = 0 impliesx = 0,

for all x € gX 4. Moreover, we define the following property:
(Q) We say tha X 4 satisfies property (Q) if4X3, (-, -)g) satisfies property (P).

We are now ready for the following definition.
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Definition 5.1. A (B-A)-equivalence bimodule is #¢A)-bimodule in the sense of (3.1)
with the following additional structure:

(E1) An A-valued inner produdt, -) 4 satisfying (X1)—(X6).

(E2) A B-valued inner produgt(-, -) satisfying (Y1)—(Y6).

(E3) The compatibility conditiog (x, y) - z = x - {y, 2) 4, X, ¥,z € X 4.
(E4) gX 4 satisfies both properties (P) and (Q).

We give a set of sufficient conditions to guarantee that property (Q) holds analogous to
conditions (P1)—(P3) for thB-action ongX 4.

QL) XA =@y XV andx® L xU) forall k # j € J with respect tgz (-, -).
(Q2) The leftB-actionLg preserves this direct sum. .
(Q3) Eachx) is pseudo-cyclic fotz with filtered subspaces/) = Uﬂeﬂ‘,-)xfs") and

pseudo-cyclic vector.@éj ).

Remark5.2. The condition§Q1)—(Q3)are independent ¢P1)—(P3and we do not require
any compatibility between the righd-action R 4 and (Q1)—-(Q3)nor between the left
B-actionLi and (P1)—(P3).

It is then clear that a bimodulgX 4 satisfying (E1)-(E3) and (P1)—-(P3), (Q1)—(Q3) is
an equivalence bimodule.

Definition 5.3. A and B are called (formally) Morita equivalent if there exists:.4)-
equivalence bimodulgX 4.

Whenever the contextis clear, we will refer to formal Morita equivalence simply as Morita
equivalence. From the definitions, we see thatif 4 is an equivalence bimodule, so is
4X5; hence Morita equivalence is a symmetric relation. We will next discuss reflexivity
and transitivity.

Proposition 5.4. SupposeA is a *-algebra over C with an approximate identity
{Eqy, Axlacr- Let B be a*-algebra overC and suppos@® : B — A is an isomorphism.
ThenA and B are (formally) Morita equivalent. In particular.A is Morita equivalent to
itself.

Proof. Consider the B-.A4)-bimodulesX 4 = ¢5)A4 as defined in Proposition 4.8 and
define on this bimodule &-valued inner product given by(A1, A2) = ¢—1(A1A§). Then,

just as in Proposition 4.8, one can show that the axioms (X1)-(X3), (X4a), (X5), (X6) and
(P1)—(P3) hold, as well as (Y1)—(Y3), (Y4a), (Y5), (Y6) and (Q1)—(Q3). Finally, a simple
computation shows that (E3) also holds. O

We will now discuss transitivity properties of Morita equivalence. l&et3 andC be
*-algebras oveC. Suppose3 and.A are Morita equivalent, with equivalence bimodule
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BX 4, and also thatl andC are Morita equivalent, with equivalence bimodyl& .. Before
we state the main result, we need the following observation:

Lemma 5.5. LetA € A be positive. Then for alt’ € 4 X, we have(x’, AX)¢ € C*.

Proof. Letw : C — C be a positive functional. Fix’ € 4X and consider the linear
functionalw : A — C on A, defined byw(A) = w({x’, AX)¢). Itis clear thatv(A*A) > 0
(by (X4)) for all A € A and hence is positive. So ifA is positive,w ({x’, AX)¢) > 0 for
all w positive and the proof is complete. d

Proposition 5.6. Suppose thas X 4 satisfieP1)—(P3jand 4 X, satisfiefQ1)—~(Q3).Then
B and( are also Morita equivalent

Proof. Let X" = X ® 4 X' be the (A balanced) tensor product gi 4 and 4X. It has a
natural 3-C)-bimodule structure, and we denote it b ;. Note that the formula

((x1 ® x1, x2 @ X5))¢ = (x1, (X1, X2) A - X5)¢C

uniquely defines a magy(-, -))c: sXpx pX; — C satisfying (X1)—~(X3) and (X5).
Similarly,

B({x1 ® x1, X2 ® x5)) = p(x1 -4 (X7, X5), x2)

uniquely defines a map((-, -)): sX;x pX;; — C satisfying (Y1)—(Y3) and (Y5). Let us
show that((-, -))¢ satisfies (X4). Recall that singsX 4 satisfies (P1)-(P3), anye g X/,
can be written as

z= fo) ®xi + .- —I—x,ﬁ” ®x,’l, xii), .. .,xlgi) e x®,
i

But following conditions (P1)—(P3), we know that for eachthere exists amy; such
thatx{”, ..., x\" € x¥). So, we can findd\",..., AY e A such thatr!” = 20 .
AD D = 2l A and hence

=Y 20 AV @x+-+ 20 AV ey, =) 2 ey,

1 1

wherey; = AY) Xy Af,i) - x;,. Therefore, we have

) LY W S M

L] L]
But sinceX® L xU) for all i # j with respect to(-, -) 4, it follows that ((z, z))¢ =
> i (29, 28y Ayi)e and hence(z, z))¢ > 0 by Lemma 5.5. Similarly, we can use
that 4 X, satisfies (Q1)—(Q3) to show that(, -)) is positive semi-definite. So we conclude
that ((-, -))¢c satisfies (X1)—(X5) ang/((-, -)) satisfies (Y1)—(Y5). We also observe that it
follows from Remark 3.7 that the actions.dfon X 4 and 4 X, are strongly non-degenerate
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and an easy computation, like in the cas€ tfalgebras, shows that this implies the fullness
conditions (X6) and (Y6). A straightforward computation, also similar to@tiealgebra
setting, shows that the compatibility condition (E3) is also satisfied.

So it only remains to check (E4) to conclude the proof.(&tr) be a*-representation
of C. Then, sincgy X, satisfies (P), we can define a positive semi-definite Hermitian product

on$H = 4%, ®c Kby
(x] ® k1, x5 ® k) g = (k1, e ((xy, xp)e)k2) g, X1, %5 € aXp, ki k2 € R

But now §) is aC-module with a positive semi-definite Hermitian product at@cts on
it by adjointable operators. So due to Lemma 3.2, we can define a positive semi-definite
Hermitian product osX 4 ® 4 =5 X4 ®4 (4X; ®¢ R) by setting

(X1 ® (x] ® k1), x2 @ (x5 @ k2)) = (x1 ® k1, ((x1, X2) A - X5) ® k2) g
= (k1, me ((x7, (x1, X2) Ax5) ¢ )k2) .-

Finally, note that the last expression is just the definition of the Hermitian product induced
ON(BXA®AAX,) ®c R =X A®A(4X, ®c ) by the bimodulgs X, =X 4 ®4 AX.

So pX}; satisfies property (P). Analogoustﬁ/ég also satisfies (P), for we can identify
C?é Ecg;ﬁg A§B- O

It is important to point out that Proposition 5.6 does not show transitivity in general, but
it will still be useful later, in Section 6. We will finish this section with a discussion about
functors corresponding to equivalence bimodules. We will start with two lemmas which are
analogous to results i@*-algebras.

Lemmab.7. Supposed, 5 are*-algebras oveC and letg X 4 be an equivalence bimodule.
Let (%), m4) be a strongly non-degeneraterepresentation ofd. ThenRy o Rx (9, 7 4)

is unitarily equivalent to($), = 4). Analogously, if(§, 73) is a strongly non-degenerate
*-representation oB, thenRx o R(R, ) is unitarily equivalent ta &, ).

Proof. The proof basically follows [64, Section 3.3]. Lét= gX 4 ® 4 andf = R/(R)*.
Also define®y’ = 4XpRpRandH’ = H'/(H')L. Notethatthereis alinear map: $ — $’
uniquely defined by

U(x @[y ®y]D =mallx, ) )y for x,y € pXa, ¥ €9.

Sincer 4 is strongly non-degenerate aqg-) 4 is full, itimmediately follows thaU is onto.
A simple computation using the definitions shows tigireserves the Hermitian products,
and therefore itis unitary. Itis also easy to check tiantertwinesr 4 andfiz o Rx (7 .4)-
Thus the conclusion follows. The same argument holdé#for O

Moreover, the previous construction is natural in the following sense.



332 H. Bursztyn, S. Waldmann/Journal of Geometry and Physics 37 (2001) 307-364

Lemma 5.8. Suppose we have two strongly non-degenefatepresentationg 1, ni)
and (92, n’i) of A, and letT : 91 — $» be an intertwiner operatofadjointable or
isometriQ. LetUs : Rz oRx(H1) — H1andUz : Ry oRx(H2) — $H2 be the two unitary
equivalences as in Lemrba7. ThenUz o (M5 oNRx (T)) = T o Uz. An analogous statement
holds forB.

Proof. This is also a simple computation using the definitions, that can be carried out just
like in the C*-algebra setting (see [64, Section 3.3]). O

Before we state the main theorem about equivalence of categories, we need the following
definition.

Definition 5.9. We call an equivalence bimodulgX 4 non-degenerate if the actiohg
andR 4 are both strongly non-degenerate.

Itfollows from Proposition 3.6 that X 4 is a non-degenerat8{.A)-equivalence bimod-
ule then it makes sense to restrict the induced fun®fars?ix to strongly non-degenerate
representations:

My : *-Rep(4A) — *-Rep(B) Rz : *-Rep(B) — *-Rep(A). 61

We can then state the following theorem.

Theorem 5.10. Let A and BB be *-algebras ovelC. If zX 4 is a non-degeneraté53-.A)-
equivalence bimodule thefty and Ry define an equivalence of categories between
*-Rep(A) and*-Rep(B).

The proof is a direct consequence of Lemmas 5.7 and 5.8. Let us discuss some situations
where an equivalence bimodyk& 4 is automatically non-degenerate. Observe that this is
clearly the case ifA andB3 are unital and-3(15) = R4(14) = id (see Remark 5.18). We
will now need the following lemma.

Lemma 5.11. Let B be a*-algebra overC with approximate identity and lgiX be a left
B-module equipped with B-valued positive definite inner product. Then the actioBf oh
X is strongly non-degenerate. The same holds for righihodules with a corresponding
A-valued positive definite inner produgt -) 4.

Proof. Note that for a genera € BB, we have
Bx—B-x,x—B-x)=p (x,x) — Bg{x,x)— g{x,x)B* + B g(x, x)B*.

But sincel3 has an approximate identity, we can fifig € B such thatt,z(x, x) = g(x, x)

E, =p{x,x)andE, = E}. So, forB = E, we getg(x — Ey - x, x — E, - x) = 0 and by
non-degeneracy gf(-, -) it follows thatx = E, - x. The same argument can be applied to
right A-modules. O

We then have the following result.
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Corollary 5.12. Let.4 and B be *-algebras ovelC with approximate identities and sup-
posepX 4 is a (B-A)-equivalence bimodule satisfyir@4’) and (Y4). ThengX 4 is
non-degenerate. In particular, the induced functdig and 935 define an equivalence
of categories betweehnRep(A) and*-Rep(B).

From Remark 3.7, we note thatgft 4 is an equivalence bimodule satisfying (P1)—(P3),
(Q1)—(Q3), then the actiohgz andR 4 are strongly non-degenerate. The following corollay
follows immediately.

Corollary 5.13. If gX 4 is an equivalence bimodule satisfyi(il)—(P3), (Q1)—-(Q3}hen
Rx andRy define an equivalence of categories betweétep(A) and*-Rep(B).

We call two *-algebras oveC “categorically” Morita equivalent if they have equiva-
lent categories of strongly non-degenerate representations. Note that Theorem 5.10 shows
that formal Morita equivalence (through a non-degenerate equivalence bimodule) implies
“categorical” Morita equivalence. A natural question is then whether or not these two no-
tions are equivalent. We will now see that, as in the theorg bflgebras (see [10,67]),
this is not the case. To this end, we will consi@and A (C"), the Grassmann algebra of
C". We define &-involution on A\ (C") by setting ¥ = 1 andef =¢; foralli =1,...,n,
wherees, .. ., e, isthe canonical basis & (see, e.g., [23, Section 2] for a discussion about
this *-algebra). Let now($), =) be a strongly non-degenerdtaepresentation of\ (C").
Sincern (¢;) is self-adjoint and nilpotent (far; A e1 = 0), it follows from Proposition 2.8
thatw(e;) =O0foralli =1,...,n and hencer(ej; A--- Ae;,) = m(ey)...m(e;,) =0
forallr > 1 andi; € N (andx (1) = id by non-degeneracy). If we think & as embed-
ded in A (C") in the natural way, we can then conclude that any strongly non-degenerate
*-representation o€ extends uniquely to a strongly non-degeneratepresentation of
/A(C") and it is also clear that any such representatiof\@C") can be restricted t@.
It is easy to check that this correspondence actually establishes an equivalence of cat-
egories betweeri-Rep(C) and*-Rep(/\(C")). Hence we have the following proposi-
tion.

Proposition 5.14. *-Rep(C) and*-Rep(/\(C")) are equivalent categories

We will now show, however, tha and A (C") are not formally Morita equivalent. In
order to do that, we need to observe a couple of general results about equivalence bimodules.
So letA andB be two*-algebras ove€.

Lemma 5.15. Let gX 4 be a(B-A4)-bimodule satisfyindE2). If B has an approximate
identity, then the action malpig : B — End4 (X 4) is injective. IfgX 4 satisfieg(E1),
then an analogous statement holds fbandR 4.

Proof. Supposé.g(B) = 0. Since3 has an approximate identity, there exiBtse B such
thatB = E, B and using thag(-, -) is full, we can writeE, = g(x1, y1)+ -+ B{Xn, Yu).
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B=B(p(x1, y1) + -+ Blxn, yu))= B{La(B)x1, y1)+---+ B(LB(B)xn, y»)=0,
since we are assuming that(B) = 0. The same argument appliesdcandR 4. O

We now define
Na={x € pXal{x,y)a=0Vy e pX 4} and
Np ={x € pXalp{x,y) =0Vy € gX .4}, (5.2)

and observe the following proposition.

Proposition 5.16. Let gX 4 be a(B-.A)-bimodule satisfyingE1)—(E3)and assumel and
B have approximate identities. Thathy = N = N andgX 4/N is still a (B-.4)-bimodule
satisfying(E1)—(E3).Furthermore, ifgX 4 is an equivalence bimodule, then sgi¥ 4 /N .

Proof. Supposa € N4andlety, z € gX 4. Thennote thdtz(z(y, x))z = yRA({x, 2) 4)

= 0. Sincez is arbitrary, it follows that. 5 (5(y, x)) = 0 and hence Lemma 5.15 implies that
B{y,x)=0forally e gX 4. Sox € Ng. We can then reverse the argument and conclude
thatN 4 = Ng. Itis not hard to check thagX 4 /N still carries a natural lefB-action and

a right.A-action (sinceV is both.4 andB invariant). Moreover, we can also defige and
B-valued inner products ogX 4/N in the natural way and a simple computation shows
that all the properties of an equivalence bimodule still hold. O

Remark 5.17. Observe that it is not necessarily true théy = {x € gX 4|{(x, x) 4 = 0}.
Thus, the inducedi-valued inner product o X 4/ N does not necessarily satisfpf4’)

(and similarly, the induce#-valued inner product ogX 4 /N does not necessarily satisfy
(Y4")). However, there are important situations where the induced inner product on the
quotient is in fact strictly positive, see Lem‘a1.

Remark 5.18. SupposeA is unital. In this case, we observe thatgfX 4 is such that
(x,y)4 =0forall y € gX 4 implies thatr = 0, thenR 4(14) = id. To see that, just note
that (x, y) 4 = (x, y)4 14 = (x,y-14)4 forall x, y € gX 4 and clearly the analogous
statement foi3 and L also holds. Hence, it follows from Propositi&nl6 that we can
assume, without loss of generality, thaf (1 4) = Lp(1p) = id.

We can now prove the following proposition.

Proposition 5.19. Supposed andB are*-algebras with approximate identities, and assume
A has sufficiently many positive linear functionals. k&t 4 be a(3-.A)-bimodule satisfying
(E1)-(E3).ThenB also has sufficiently many positive linear functionals

Proof. By Proposition 5.16, we can assume that) 4 satisfies(x, y) 4 = 0 for all
y € gX 4 implies thatx = 0. Letw be a positive linear functional id andx € gX 4. Note
thatthe maB — w((x, B-x) 4) defines a positive linear functional Let B = B* € B.
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To show that3 has sufficiently many positive linear functionals, it suffices to show that if
B # 0, then there exist® andx such thatw({x, B - x) 1) # 0. To see that, suppose that
for all x € g% 4 andw positive linear functional in4, we havew({x, B - x) ) = 0. Then
since A has sufficiently many positive linear functionals, it follows thietB - x) 4 = 0

for all x. But then, by polarization, it follows that4, B - y) 4 = Oforallx, y e gX 4, and
hence(x, B - y) 4 = Oforallx, y € gX 4 sinceA is torsion-free (see Proposition 2.8). But
then we must hav® - x = 0 for all x € gX 4 and hence by Lemma 5.15 we conclude that
B = 0. This finishes the proof. O

It is easy to check thaf\ (C") is not an algebra with sufficiently many positive linear
functionals (see, e.g., [23, Section 2]) We then have the following immediate corollary.

Corollary 5.20. The*-algebrasC and A (C") are not formally Morita equivalent

Finally, we will show that if twd*-algebras with sufficiently many positive linear function-
als (and approximate identities) are formally Morita equivalent, then there actually exists an
equivalence bimodule satisfying (34and (Y4). This will be an immediate consequence
of the following lemma.

Lemma5.21. Let.4 and 3 be*-algebras with sufficiently many positive linear functionals
and approximate identities. LgtX 4 be an equivalence bimodule. Then

Ny ={x € gXl{x,x)4 =0}

In particular, there is a well-defined strictly positivé-valued inner product ogX 4 /N 4.
An analogous statement holds f9g and (-, -).

Proof. Note that given a positive linear functiona) we can define a positive semi-definite
Hermitian product oigX 4 by (x, y) — w({x, y) 4). It then follows from (2.3) that

o({x, y) Ho((x, y)4) < o(x, x) Doy, y).4)- (5.3)

So, if (x,x) 4 = 0 it follows thatw({x, y) 4) = 0 for all positive linear functional.
Hence, by Corollary 2.9, we have that y) 4 = O forall y € gX 4. The conclusion is now

immediate and the same argument can be usegd(for). O
Then we can state the following result, which follows from Lemma 5.21 and Proposition

5.16.

Proposition 5.22. Let.A and B be *-algebras with sufficiently many positive linear func-
tionals and approximate identities and suppose they are formally Morita equivalent. Then
there exists 4B-.A)-equivalence bimodule satisfyig4’) and (Y4').

Note that it follows immediately from Corollary 5.12 that4fandB are*-algebras with
sufficiently many positive linear functionals and approximate identities which are Morita
equivalent, theri-Rep(A) and*-Rep(B) are equivalent categories.
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6. Formal Morita equivalence for matrix algebras and full projections
We will start this section by discussing how (formally) Morita equivaleatgebras can
be constructed out of each other, in analogy with the theoy/*eilgebras (see [64,65]).
Let A be a*-algebra ovelC and letX 4 be a right4-module equipped with a positive

semi-definited-valued inner product, -) 4. Then we can consider the set of all endomor-
phisms ofX 4 (that is, rightA-linear maps), denoted EndX 4) and define

B(X 4) ={T € Endyq(X4)|T hasan adjoint with respecttf, -) 4}. (6.1)

We can also define, for eagh y € X 4, the “rank one” operators

@x,y(z) =X ()’a Z).A’ Z € xA (62)
and then consider the “finite rank operators”
§(X4) = C-spaf Oy, y|x, y € X 4}. (6.3)

A simple computation shows thé, , is an adjoint for®, , and hencg (X 4) € B(X 4).
We can then regar@(X 4) as a*-algebra by settingy | = ©, .. Itis easy to check that
F(X 4) is a two-sided ideal if3(X 4). Note that if(-, -) 4 is a non-degeneratd-valued
inner product, thefB (X 4) is also & -algebra and in this caggX 4) is actually a two-sided
*-ideal ofB(X 4). The relevance of (X 4) for formal Morita equivalence is illustrated by
the following proposition.

Proposition 6.1. SupposezX 4 is a (B-.A)-equivalence bimodule and th&thas an ap-
proximate identity. TheB8 = §(X 4) via Lg.

Proof. We know that_z(B) C B(X 4) and thatlLg : B — B(X4) is a*-homomorphism
such thatLz(B*) is an adjoint ofLz(B). Note thatLg(g{x, y))(z) = (x,y)g-z = x -
(y,2).A4 = Oy ,(z) and hencg (X 4) C Lp(B). Butsinceg(:, -) is full, it then follows that
Lg(B) = §(X4). Itis also easy to check thaz : B — F(X 4) is a*-homomorphism.
Finally, injectivity of L follows from Lemma 5.15. O

We also observe that the proof of Proposition 6.1 only assumed that the bimgéyle
satisfies (E1)—-(E3) (not necessarily (E4)). Note that if we consider the bimgdu|eX 4,
with (X 4)-valued inner product given by

3@ X, ) =Lp(x, y) = Oy,

thengX 4 =z(x4) X4 as equivalence bimodules. So, giveiralgebraA, a natural way to
search for-algebras (formally) Morita equivalent to it is by considering rightmodules

X 4 endowed with a full positive semi-definité-valued inner product, and computing the
corresponding-algebrasy (X _4). The difficulty is showing that the formula

S(XA)OC’ y) = @x,y (64)

is such tha®, , € F(X4)™T in general. But if one manages to do that, then we have the
following proposition.
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Proposition 6.2. Let X 4 be a right.4-module with a full positive semi-definii#-valued
inner product. If, , € F(X )1 Vx € X 4, thengx ,) R4 defines 4§ (X 4)-.A)-bimodule
satisfying(E1)-(E3).

Proof. Itis clear thatzx ,) (-, -) as defined in (6.4) satisfies (Y1). Note thtaf , = O, «
implies (Y2) and since’®, , = Oy, forall T e B(X 4), (Y3) also holds. By our
hypothesis?, , > 0 and fullness is immediate from the definition3iX 4). So (E1) and
(E2) hold. Finally, the compatibility condition (E3) is also easy to be checked. [

Property (E4) does not seem to hold in such a general setting. It will also be useful to
observe the following proposition.

Proposition 6.3. LetX 4 be as in Propositio.2and supposel = C. Then we automati-
cally have®, eAg(aeAﬁ (and hence the conclusion of Propositier2 holdg. Note also
thatif A = C = Cis afield, ther®, , € F(X ).

Proof. Justnote thatgivenanye X 4 suchthaty, y) 4 # 0 (and one can always find such
ay), then we can writéy, y) 40, x = Oy Oy« € F(X2)TT. But since(y, y) 4 € CT, it
follows that®, , € F(X)T.fA=C = Cis afield, then the last claim in the proposition

follows from the invertibility of(y, y) 4. O
More generally, we have the following useful results

Proposition 6.4. Let X 4 be as in Propositior6.2. Suppose that for any € X 4, there
existsy; € X4, i = 1,...,nsuchthatr - (3, (yi, yi)4) = x. Then®, , € FE ). In
particular, it follows from Propositio.2that in this casex ,)X 4 is @ bimodule satisfying
(E1)-(E3).

Proof. Justnote tha} O, y, O |, = 3,0y, Oy, x = O3 (3 yi) 4x = Oxx- O

Corollary 6.5. If Ais unital and if we can writd = >, (y;, yi) 4 for somey; € X 4, then
3x X4 is a bimodule satisfyingE1)—(E3)and(Y4a).

Remark 6.6. Let us remark that in the case 6f-algebras O, , is always positive. This
follows from the fact that there is a very nice characterization of the positive “compact”
operators on a right Hilbert4A-moduleX 4, namelyX(X 4) " = {T € K(X )|(TX x) 4 >

0 Vx € X 4} and a simple computation shows that elements of the éymbelong to this
set. Se¢64, Section?.2].

We will now use some of the previous ideas to discuss examples of formally Morita
equivalent-algebras.

Suppose is any set and consider the fréemoduleC) = @;4C, regarded as a right
C-module with fullC-valued inner product given by

(v, w)c == Zﬁiwi. (6.5)
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Let {¢;};e be the canonical basis 64, which is orthonormal with respect to the inner
product just defined. We defirg(C!") as in (6.3) and observe thg(C“) is unital

if and only if A is a finite set. However, note thg(C4) always has an approximate
identity. Indeed, lef be the set of all finite subsets df, with the natural partial ordering
by inclusion. Then for eacli € F, we defineE; = Zjej@ej,ej and one can check
that{E,};cr is an approximate identity q§(C?) (with corresponding filtration given
by F(C) = J,cC-span®,, ., li. j € J}). Also note that Proposition 2.8 implies that
F(CW) has sufficiently many positive linear functionals.

Observe thatforanye A, we havele;, ¢;) = 1 and therefore by Corollary 6.5, it follows
thatCY is a (§(C1)-C) bimodule satisfying (E1)—(E3) and also (X}#and (Y44). Also
observe thaCY) = @,Ce; and it is easy to check that (P1)—(P3) hold. Finally, note that
the F(C)-action onC“) is cyclic since, if we fixe;, for somei € A, then anyw € C4Y
can be written as = ©,,,¢; and hence; is a cyclic vector. So (Q1)—(Q3) hold a@{?
is a (C“)-C)-equivalence bimodule.

If Ais afinite set, say with elements, the@?) = C* andF(C") = B(C") = M, (C).
So it follows thatC and M,,(C) are formally Morita equivalent. We will summarize the
discussion with the following proposition.

Proposition 6.7. The free modul€“) = @, ,C has a natura(F(C“4)-C)-equivalence
bimodule structure. S§(C“V) andC are formally Morita equivalent. In particulaC and
M, (C) are formally Morita equivalent for all positive integers n

Let us now discuss the situation where, instea@@f, we have an arbitrary pre-Hilbert
space ovet, denoted by (we remark that pre-Hilbert spaces do not have orthonormal
bases in general, see [21] for an example, where in fact the pre-Hilbert space is even a
Hilbert space over an algebraically closed field). Let us suppose in additio® that =
Ii(i) is actually a field (andf? is an ordered field). We can regafdas a righté-module
with full positive definiteC-valued inner product (fullness is guaranteed by the fact that
C is a field). Then, by Propositions 6.2 and 6.3, it follows thd a (5($)-C)-bimodule
satisfying (E1)—-(E3) as well as (Y4aHere again, Proposition 2.8 implies tigt9) has
sufficiently many positive linear functionals. One can check &t acts on in a cyclic
way, and in fact any non-zero vectore $) is a cyclic vector for this action. Indeed, fix
v e N v #0and pick anyw € $. Then the operatol = 0,,,/(v,v) € F(9H) is
such thafTv = w. So (Q1)—-(Q3) hold. Finally, property (P) follows from the even more
general fact that the tensor product of two pre-Hilbert spaces Gvgrot necessarily a
field) is well defined (see Corollary A.7 in Appendix A). We can then state the following
proposition.

Proposition 6.8. If C = R(i), whereR is an ordered field, thel€ is formally Morita
equivalent ta§ (), wheres) is any pre-Hilbert space ovet.

Itis interesting to note that this is a “formal” analogue of the classical res@itialgebras
that asserts that the algebra of compact operators on any Hilbert space is Morita equivalent



H. Bursztyn, S. Waldmann/Journal of Geometry and Physics 37 (2001) 307-364 339

to C (see [64, Section 3.1]). In fact, Proposition 6.8 implies that the algebra of finite rank
operators on any Hilbert space is formally Morita equivalerifto

We will now generalize Proposition 6.7 by replaci@dy an arbitrary*-algebra oveC
(with an approximate identity). But first, we need to discuss tensor products of equivalence
bimodules. Letd, A2, B1 andB, be*-algebras. Thenitis nothard to see that the analogue of
Proposition 4.5 foBB; andB2 valued inner products satisfying the corresponding conditions
(Y) and (Q) also holds.

Proposition 6.9. Let 5, X 4, and 5,X 4, be equivalence bimodules satisfyi(il)—(P3)
and (Q1)-(Q3)as well as(X4a) and (Y4a). Let A = A1 ® A2, B = B1 ® B2 and
BXA =8,X4,®B,X4,- ThengX 4 is an equivalence bimodule also satisfy{ird)—(P3),
(Q1)—(Q3), (X4ajpnd(Y4a).

Proof. By Proposition 4.5 and the remark above, everything is shown except for (E3). But
this follows from an easy computation. O

Let now 4 be a*-algebra ovelC with an approximate identity. We know that4 4 is
an equivalence bimodule satisfying (P1)—(P3), (Q1)—(Q3), (X4a) and (Y4a). It was shown
earlierin this section th%gcm))c(/‘)c is an equivalence bimodule also satisfying (P1)—(P3),
(Q1)—(Q3), (X4a) and (Y4a). We will consider now ttg(C“) ® A-C ® A) bimodule
given byzcu,CYc® 4.A4. Note thatg(CY) ® A = F(AX) andC ® A = A, and
under this identification we can write

5 C e ® aAs Zgam) AL,

where A, = ®;c4.A. By Proposition 6.9, it then follows th%t(Am))Aff) is an equiva-
lence bimodule satisfying (P1)—(P3), (Q1)—(Q3), (X4a) and (Y4a). Based on the previous
discussion, we can then state the following proposition.

Proposition 6.10. Let.A be a*-algebra overC, with an approximate identity. Thet and
F(AM) are formally Morita equivalent. In particulatd and M,, (A) are formally Morita
equivalent for all positive integers n

We shall now describe a more general construction of formally Morita equivalent
*-algebras. This construction will enable us to recover the results on Propositions 6.7 and
6.10 and will also lead to some important generalizations.

Let A be a*-algebra oveC with an approximate identit4,, E,}ocs, @and letA be any
set. Consider again thé-right free module4V) = @;c 1.4, endowed with thed-valued
inner product given byw, z) = >, w¥z; forz, w € A“Y. Observe that sincd is assumed
to have an approximate identity, this inner product is full. Let us now considérdlgebra
F(AW). We remark thag(A“) also has an approximate identity, defined as follows. If
we let F = {Finite subsets ofA}, then we can considdr partially ordered by inclusion
and thenF x I also has a natural partial order.ilfe A, « € I, lete;, € A be the
element withith component£, and zero elsewhere. Then givére F anda € I, we set
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Ejo =7 ic;Oq.c;o aNd check thatE .} is an approximate identity (with corresponding
filtration given byU(J’a)C-spar{@x,ﬂxi =y, =01if i ¢ J,x;,y € Ax}).
Let O € B(AW) be aprojection, i.eQ = 0* = Q2. Moreover, assume thék satisfies

C-sparfAQBA, B € F(AW)} = F(AW). (6.6)

Such a projection is callefull. Note thatQF(AW)Q € F(AW) is a*-subalgebra, since
F(AW) is a two-sided ideal ofB(AMX). We will now investigate wherg(A“) and
0F(AM)Q are formally Morita equivalent.

Let X = F(AXW)Q. ThenX has a naturalF(A“)-0F(AN)Q)-bimodule structure,
with respectto leftand right multiplication. We can defged4)- andQ §(AY) 0-valued
inner products otk by

sA (AQ BQ) = AQQ'B* = AQB", A, B € F(AW), (6.7)
which is full sinceQ is a full projection, and
(AQ BQ) pz(amyp = Q*A*BQ=QA'BQ, A, B € F(AW), (6.8)

which is also full, since elements of the forri B spang (A“)) (since it has an approximate
identity). Also note that these inner products satisfy (X4a) and (Y4a). Itis easy to check that
the inner products are compatible (as in (E3)) and#iat4)) acts or in a pseudo-cyclic

way (with pseudo-cyclic vectorsE; , Q) for {E; .} the approximate identity §(A“)).

So properties (Q1)—(Q3) are satisfied. We shall now discuss situations where (P) also holds
andg(Am))ng(Am))Q is an equivalence bimodule. To this end, let usjfik A and define

3 =160, 0lv € AV} andFY) = ;3¢ . Then we can writ§(AX) = @;caF"

and hence

X=FAM0= @50 (6.9)

Note that§¥Q < ¥ andF V0 L FQ fori # j with respect to(-, ) o34 p-
Moreover, this decomposition is preserved by the right actio@®tA“)Q on X. Let
us now consider the action @F(A“Y)Q on F? Q, for a fixedi € A. We observe the
following lemma, which is an easy computation.

Lemma6.11. Forall z, w, v € AY we have

@w,zQ(Q@z,vQ) = @w(QZQD,vQ~ (6-10)

Suppose that for eache I, we canfind, € A andA, € AsuchthatE, A, (Qz,, Qz)

= E,. In the case wherel is unital, this is satisfied by anysuch thatQz Q2 € A is
invertible. Under this assumption, it easily follows from Lemma 6.11 that the action of
0F(AMY0 on §D Q is pseudo-cyclic, with pseudo-cyclic vecta’ = Oe; o Aarze O

and thus (P1)—(P3) (and therefore (P)) are fulfilled. We remark thati unital and we
findz € A with (Qz Q2 invertible, then the action a®F (A1) Q onF? Q is actually
cyclic, with cyclic vector® = 6, o, 0,-1., Q- We summarize the discussion with the
following proposition.
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Proposition 6.12. Let A be a*-algebra with an approximate identifyf, }oc;. Let Q €
B(AW) be a full projection such that for att € 7, we can find, € A andA, € A
satisfyingEy Aq (Qzy, Qz) = E,. ThenF(AMW) and 0F(AN)Q are formally Morita
equivalent. IfA is unital, it suffices to find € .A“) such that(Qz Q2 € A is invertible
and the same conclusion holds

We observe that Proposition 6.12 provides many examples of formally Morita equiv-
alent*-algebras. For instance, lete A and letQ € B(AYW) be the projection onto
the ith coordinate. TherQ is full and for anye € I, we can choose, = e¢;g for
somef > «. Then we haveE, Eg(Qz,, Qz,) = E,. Note thatQF(A)0 = A and
hence, by Proposition 6.12, it follows that and §(A“) are formally Morita equiv-
alent. Thus Proposition 6.10 follows from Proposition 6.12. Note also thét, iP <
B(AW) are full projections so tha®F(AY) Q0 andF(AW) are formally Morita equiv-
alent, the same holding for the pag(A“)P and F(AW), then sinceF(AW) acts
on F(AM)Q andF(AW) P in a pseudo-cyclic way, we can apply Proposition 5.6 and
conclude thaF(AW)Q and PF(AW) P are formally Morita equivalent. We will dis-
cuss this matter a little further in the end of this section. We now observe that algebras
defined by star products on Poisson manifold®,(M)[[A]], have the additional property
that any element of the form % A*A is invertible. In this case, we have the following
corollary.

Corollary 6.13. Supposed is unital and has the property thdt+ A*A is invertible for
all A e A If Q = (Qjj) € M, (A) is a full projection such thaQj; is invertible in.A for
somei, j, then the conclusion of Propositighl2holds

We will now concentrate our discussion in the special situatior= C. In this case,
even if (Qz Q2 is not invertible, we can always chooseso that(Qz Q2 < R™ (for
Q is full). Then one can still use Lemma 6.11 to show that this is sufficient to guarantee
(P) (by an argument similar to the proof of Lemma 3.1). Finally, observe that any projec-
tion of the formQ = Zf‘:l@eij,eij is full. In particular, if 0 = &,, ., for some fixed
i € A, thenF(CHY)Q = CW and QF(CY)Q = C. So this example recovers the re-
sult in Proposition 6.7. Note that since the (left) actior§o€4) on F(C4))Q satisfies
(Q1)—(Q3) for any full projectior® € B(CW), it then follows that ifQ, P € B(C) are
full projections, then one can apply Proposition 5.6 and concludesi@itV) 0 ®z(c(a)
F(CD)Pisa(QFCY)0-PF(CW)P)-equivalence bimodule. Observe g (C4)) P
is a (QF(CW)Q-PF(C) P)-bimodule with respect to left and right multiplications, and
we can also endow it witF(C)Q and PF(CW) P valued inner products in a natu-
ral way (QAP, QBP) — QAPBQ, (QAP, QBP) > PA*QBP, respectively) and an easy
computation shows that, in facg(C4)Q ®zcw)y FCY)P = QF(C)P. Hence
0F(C)YPis a (QF(CHY)Q-PF(C)P)-equivalence bimodule. In particular, K =
O, ¢, forsome € A,thenPF(CY)P = Candtherefor€ andQF(C)Q are formally
Morita equivalent for all full projectiong) € B(C“). We will summarize the discussion
in the following proposition.
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Proposition 6.14. Let Q0 € B(C“) be a full projection. TheF(C“)) and QF(C)Q
are formally Morita equivalent. Furthermore, # € B(CW) is another full projection,
then it follows thatPF(C)) P and QF(CV) Q are also formally Morita equivalent, with
equivalence bimodule given BF(C“V)Q, and moreover this bimodule satisfigé4d),
(Y4d) and it is non-degenerate

As in the theory ofC*-algebras, we will call th&-algebras of the forn@F(C4) @ full
cornersof F(C™). Proposition 6.14 then states that any two full cornerg§@ ) are
formally Morita equivalent.

We end this section with a few remarks about the construction of pairs of Morita equivalent
algebras out of full projections, as illustrated in Proposition 6.14.@6algebras, it is
known that, in factall pairs of Morita equivalent algebras arise as complementary full
corners of the corresponding linking algebra (see [64, Section 3.2]). The same construction
actually holds for unitaf-algebras ove€ but the extension of these ideas to non-unital
situations depends on a further development of the concept of multiplier algebra in this
context. The discussion of this matter will await another time.

7. Formal versus ring-theoretic Morita equivalence

Recall that we have shown in Proposition 5.4 that two isomorpfatgebras are also
(formally) Morita equivalent. This section will be devoted to showing that the converse is
also true for commutative and unitahlgebras. To this end, we will explore the relationship
between the notion of formal Morita equivalence and the more standard notion of Morita
equivalence for unital algebras. Let us start recalling some basic notions of Morita theory
for (arbitrary) unital algebras (over some fixed unital commutative ring). See [7,50] for
further details.

We say that two unital algebrasand B over a ringS areMorita equivalenif they have
equivalent categories of left modulessat of equivalence dai&, B, P, Q, f, g) (see [7,

62 pp.]) consists of unitéb-algebrasA and B, bimodules, Pz and 5 Q4 and bimodule
isomorphismsf : P ®p Q@ — Aandg : Q ®4 P — B satisfying:

1 f(p@qp =pglg®p),
2. glg®p)g’ =df(p ®4q".

A set of equivalence data is also callearita context

Remark 7.1. It can be showifsed7, 62 pp.])that if f and g are surjective homomorphisms
satisfying the two conditions above, then they are actually isomorphisms

The main theorem of Morita theory for unital algebras assertsAtetd B are Morita
equivalent if and only if there exists a set of equivalence dataB, P, Q, f, g) as above.
Moreover, if such a set of equivalence data exists, then one can actually show (see [7,
pp. 62—-65]) that? andQ are finitely generated projective modules with respeet smdB.

Also P = Homy (9, A) = Homp(Q, B) as (A-B)-bimodules and? = Homp (P, B) =
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Homy (P, A) as (B-A)-bimodules. Moreoverd = Endg (P), B = End4 (Q) andcentexA)
= End(4Pp) = End(pQ4) = centeXB). The isomorphisng : centefA) — centeKB)
is given as follows. For each € centeKA), we definep (a) as the uniqué € cente(B)
such that:

ap=pbVvp eP.

We also have the following characterization of Morita equivalence for unital algebras (see
[50, Proposition 18.33]): two unit&3-algebrasd and B are Morita equivalent if and only
if A= eM,(B)efor some full idempotent € M, (B). We recall that € M,,(B) is a full
idempotent ife? = ¢ and theS-span ofBeBis B (see (6.6)).

We will now show how Morita theory for unital algebras is related to formal Morita
equivalence.

Proposition 7.2. Let .4 and B be unital*-algebras ovelC and supposgX 4 is a bimod-
ule satisfying(X1)—(X3), (X5), (X6) as well as(Y1)—(Y3), (Y5), (Y6) and (E3). Then
(A, B, 4X5.58 %4, [, g) is a set of equivalence data, where

fiaAXpeBBXA— A FQy > (x,))4,
8 BXA®AAXB — B, x®y 5 (x,y).

In particular, A4 and 5 are Morita equivalent as unital algebras

Proof. Note that conditions (1) and (2) in the definition of a set of equivalence data hold
by the compatibility condition (E3). So it remains to show thfaand g are bimodule
isomorphisms (it is clear that they are homomorphisms). Observe that gince and

(-, )4 are full, it follows that f andg are surjective. The conclusion then follows from
Remark 7.1. O

We remark that we did not need the positivity conditions (X4), (Y4), (P) and (Q) for this
proposition. We have the following immediate corollary.

Corollary 7.3. If A andB are unital *-algebras oveiC which are formally Morita equi-
valent, then they are also Morita equivalent as unifahlgebras

Corollary 7.4. It follows from the discussion after Remafkl that if gX 4 is a (B-.A)-
bimodule as in Propositioi.2 (in particular, if gX 4 is an equivalence bimodylehen

1. B= 3(35_,4) = EndA(BfA),

2. A= F(XB) = Endg(4XpR),

3. centekA) = cente(B) = End(gX 4) asC-algebras

4. There exists a full idempoteate M, (13) such thatd = eM, (B)e.

Note that if A is a*-algebra thercenter A) is also a*-algebra. We will now show that
if A andB are unital*-algebras such that there exists a bimodsie, as in Proposition
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7.2, thercentex.A) = centexB) as*-algebras. As we saw, there is an algebra isomorphism
¢ : centeA) — centekB) defined by the conditionR 4(A) = Lg(¢(A))x Vx € gX 4.

But observe that iT = Lg(B) = R4(A) € End(gX_4) (that is,T is left B-linear and
right A-linear), we can define two adjoints faf : T*4 = R_4(A*), which satisfies
B{(TX y) =p{x, T*y) forall x,y e gX 4 or T*2 = Lg(B*), which similarly satisfies
(TX, y)a = (x, T*By) g forall x, y e X 4.

Lemma 7.5. Let gX 4 be a(B-A)-bimodule satisfyingX1)—(X3), (X5), (X6) as well as
(Y1)—(Y3), (Y5), (Y6)and(E3). Then ifT € End(zX 4), we havel*4 = T*5.

Proof. SupposeA € centefA). ThenA* € centef.A) and hence we can considBf =
¢ (A*) such thatR 4(A*) = Lg(B’). So it follows thatz(Tx, y) =pg{Lg(B)x,y) =
B g{x, y). But we also have that

B(TX y) = g(xRa(A), y) = plx, yYRA(A") = plx, Lg(B")y) = glx, y)(B)".

Hence, sinceB, B’ € centeB), we conclude thaB z(x, y) = (B')* g(x, y). But since
B is unital andg(-, -) is full, it follows that B = (B")*, or B* = B’. In other words,
¢(A*) = B*VA € A. O

We then have the following immediate consequence.

Proposition 7.6. Let.A and B be unital*-algebras such that there exists a bimodghé 4
as in Lemm&.5. Then centatd) and cente3) are *-isomorphic

Corollary 7.7. If A and B are commutative unitaf-algebras such that there exists a
bimodulegX 4 as in Lemmé& .5,then they aré'-isomorphic

Let us remark that similar (and even non-unital) results have recently been obtained by
Ara in [5] (see note at the end of Section 10). For later use, we also observe the following
corollary.

Corollary7.8. LetM, N be smooth manifolds and suppose there exi@ISa M )-C>°(N))-
bimodule as in Lemm@a.5 (C-valued functions Then M and N are diffeomorphic

Proof. By the previous propositior;*° (M) andC®° (N) are*-isomorphic. So the algebras
C*®(M)r andC®(N)R are also isomorphic and hené€ and N are diffeomorphic (see
[12,74, Section 1.3.7]). O

We will now make some remarks concerning some of the previous results. First, it is
immediate to conclude that unit&lalgebras which are formally Morita equivalent have
*-isomorphic centers, and hence if they are commutative, they musisoenorphic.

Note that Proposition 7.6 does not hold if we do not assume that Aatind B are
unital. Indeed, let us recall that, as we saw in the previous sed@iamd F(CY) are
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formally Morita equivalent and ifi is not a finite set, the§(C") is not unital. It is easy
to check that, in this case, the centeo€(4) is zero whereas the center®fis C itself.
However, generalizations of Proposition 7.6 and Corollary 7.7 to non-drétiglebras (with
approximate identities) are still possible (see [5, Theorem 4.2] and the note added at the
end of Section 10).

Let us also remark that, unlike the case@falgebras (see [10, Section 1.8] and [4]
for generalizations to the non-unital case), the converse of Corollary 7.3 does not hold for
general-algebras ove€. To see that, let us start with a brief discussion about the algebra
of smooth complex-valued functions on a compact real manifold. We recall that any algebra
isomorphism® : C*(M) — C*°(M) is the lift of a diffeomorphismp : M — M (i.e.,
@ = ¢*) (the proof of this result for real-valued functions on arbitrary manifolds, as found
in[74, Section 1.3.7], also works for complex-valued functions on compact manifolds). We
then have the following proposition.

Proposition 7.9. Let M be a compact smooth manifold andd&® (M) denote the complex
algebra of complex-valued smooth functions on M. Supgos€*°(M) — C*°(M) is an
algebra isomorphism. Theh must preserve conjugatio®(f) = @ (f)Vf € C®(M).

Corollary 7.10. Supposéisaninvolution orC*®(M). Then(C*(M),*)and(C*®(M),™)
are isomorphic ag-algebras if and only if is the complex conjugation

Suppose now tha¥ is a compact real manifold admitting a non-trivial geometric in-
volution (that is, a diffeomorphisny such thaty? = id, ¥ # id). Then we can define
a *-involution on C*®(M) by settingf* = (f o) = f o . Then, by Corollary 7.10
(C*(M),*) and(C*(M),™ ) are not*-isomorphic (and hence not formally Morita equi-
valent by Corollary 7.7). But sinc€°° (M) is Morita equivalent to itself as a unital com-
plex algebra, it follows that the converse of Corollary 7.3 does not hold. Nevertheless, in
some particular situations, something can be said about the converse of Corollary 7.3. We
illustrate this fact with the following proposition.

Proposition 7.11. LetC = R(i) be such thal + xx is always invertible irC. Supposed
is a unital C-algebra Morita equivalent t&. Then there exists an involutionin .4 such
thatC and(A4,*) are formally Morita equivalent

Proof. If C and.A are Morita equivalent, then as discussed before, there exists a full
idempotent € M, (C) (not necessarily self-adjoint) so thdt= eM, (C)e. Then it follows

from [46, Theorem 26] that there exists a projecti@re M, (C) (thatis,Q = 0* = 0?)

such that

OM,;(C) =eM,(C),

and it is then easy to check thatis full, for so ise. Moreover, it follows from [46, Theorem
15] that

oM, (C)Q = eM,(C)e,
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and henced is isomorphic toQ M, (C) Q as aC-algebra. But sinc® M, (C) Q has a natural
involution inherited fromM,, (C) (as &*-subalgebra), we can define an induéeadvolution
on A, so that4 andQM,, (C) Q are*-isomorphic. But now it follows from Proposition 6.14
that A = QO M, (C)Q andC are formally Morita equivalent. O

The hypothesis about# xx being invertible is needed for [46, Theorem 26]. Whenever
C = R(i)andR isan orderedfield, this is satisfied. This condition also hold€fer C[[ A]].
For an arbitrary unitat-algebraA overC, with the additional requirement thatlA* A is
invertible for allA € A, one can show by the same argument as in the proof of Proposition
7.11 that if B is another unitalC-algebra Morita equivalent tgl, then we can define an
involution onB so that there exists @(.A)-bimodule satisfying (E1)—(E3).

8. Deformations of*-algebras and classical limit of*-representations

In order to make the general notion of algebraic Rieffel induction and formal Morita
equivalence of-algebras over ordered rings available for more concrete physical situations
like deformation quantization we shall now investigate deformatiorfisadgebras and their
bimodules.

Before we discuss some basic definitions and notationisalgebra deformations, we
recall that for an ordered rinB the corresponding ring of formal power seriRg A]] is
again ordered in a canonical way as we have seeRfidt]] in Section 2: a formal power
seriesa = Zf‘;rokra, € R[[A]] is defined to be positive if,,, > 0. In the following we
shall always use this ring ordering Bf[ A]]. Moreover, we define the classical limit map
¢ : R[[A]] — R bytakingthe order zero part, i.&.: a — ap, and useZ similar for C[[A]].
Then¢ is a homomorphism of ordered rings.

Now let A be a*-algebra ovelC. Then A[[1]] is a C[[*]]-module and extending the
productC[[A]]-bilinearly and the*-involution C[[A]]-antilinearly to A[[A]] we obtain a
*-algebra structure fo[[A]] viewed as an algebra oveZ[[A]]. We shall refer to this
*-algebra structure as ‘classical’ and denote the product sometimeg(dy B) := AB
and the*-involution by Ip(A) := A*. Then aformal associative deformation of g
in the sense of Gerstenhaber [42] is a formal segies Y .2 A", of bilinear maps
such that(A[[1]], ) becomes an associativ&[A]]-algebra. A*-algebra deformation
(i, I of A is a formal associative deformatignof A together with a formal series =
Y 22 oA I of antilinear maps, : A — Asuch that is a*-involution for the product, i.e.
(A[[A]], 1, I) becomes &-algebra ove[[ A]] such that theclassical limitsof the product
wu and the*-involution I coincide with the original produgtp and the originat-involution
Io, respectively, see [23] for a further discussion. We shall sometimes denote the deformed
product byA «x B = u(A, B) and the deformed involution by* = 1(A), and denote the
classical limits again b = po and€l = Ip. Thene : A[[A]] — A becomes &-linear
*-homomorphism.

We shall now examine the deform&dilgebra structure more closely. First we recall the
well-known fact that ifV, W areC-modules andp : V[[1]] — W[[A]] is a C[[A]]-linear
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map therp is actually of the forn® = >"°2 jA"®, with®, : V — W beingC-linear maps,

and an analogous statement holds for multilinear maps as well, see, e.g., [33, Proposition
2.1]. In this case we shall calt = ®&¢ = €@ again the classical limit of. Thus let a
*-algebra deformatiot, I) of A be given and consider a positi@[ 1]]-linear functional

o A[[A]] — C[[A]]whichcanthusbewrittenas = )" 2 ;A" . with C-linear functionals

wy ¢ A — C. Fromw(A* » A) > 0 and the definition of the ordering &f[1]] it follows
immediately that thelassical limitwg = €w of w is a positiveC-linear functional of the
classicaf-algebrad, see also [21, Lemma 6] for a formulation in the context of deformation
guantization. This raises the question of whether every classically positive linear functional
wo is automatically positive for the deforméehlgebra. A simple example shows that in
general this isnot the case [21, Section 2] and thus one is led to the refined question
of whether one camleforma classically positiveC-linear functionalwg into a positive
Cl[A])-linear functionalw of the deformed-algebra by adding appropriate higher order
terms, i.ew = Y 7o oA w,. If this is possible fomll classically positive linear functionals
then we shall call thé-algebra deformatioty, ) a positive deformationf A. It turns out

that many interesting examples and in particular all Hermitian star products on symplectic
manifolds have this property [23, Proposition 5.1]. Moreover, the important property of
having sufficiently many positive linear functionals is preserved under positive deformations
[23, Proposition 4.2].

Let us recall the definition of the-adic order and th&-adic absolute value: 18 be a
C-module and consider= Y "°2 ;A"v, € V[[1]]. Then the order of is defined by () =
min{r|v, # 0}, where we set@®) = +o0, and the absolute value ofis defined byp(v) =
27°W) Thend(v, w) = ¢(v — w) defines an ultra-metric for, w € V[[A]] and V[[1]]
is a complete metric space. The corresponding topology is called-#akc topology and
clearlyV[[A]] is a topological module over the topological ri@f[ A]], see, e.g., [21,75] for
a more extensive treatment of theadic and related topologies. The way we shall use these
topological aspects of formal power series is that we may use some less restrictive axioms
by replacing various ‘fullness conditions’ by their ‘dense’ analogues. Then the automatic
continuity of C[[A]]-linear maps (see above) ensures that the corresponding constructions
still work. In particular we shall need the following definition ofagological approximate
identity. Let A, € Ap fora < B € I be a system of directe@[[A]]-submodules of
A = A[[A]] such that{ J, ;A is densein A and letE, € A be elements such that
E,xEg =E, =EgxE,fora < B, E;, = E,,and forallA € A, one hasE, x A =
A =AxE,. Then{A,, E,}4c; is called a topological approximate identity. The classical
limit of a topological approximate identity yields an approximate identity.

Lemma 8.1. Let A be a*-algebra overC and let(A = A[[A]], u, I) be a*-algebra
deformation of.A admitting a topological approximate identifyd,, E,}4<;- Then the
classical limitA4, := €(A,) = A, N AandE, := €(E,) defines an approximate identity
{Agy, Eqlact Of A. Inparticular, if A has a unitthen the classical linéfl = lis aunitfor.A.

Proof. Itis clear that{4,}c; defines a directed filtered system of submoduled dflow
let A € A be given then we find a sequendg < |, A, converging toA in the A-adic
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topology. ButA,, = Zf‘;OA’Af,’) can only converge td if there exists av such that for
alln > N we haveAf,o) = A. Since on the other hant, € A,, for somew, we conclude
A € A, forn > N whencel J,A. = A is shown. It remains to show the defining
properties of thet, which is straightforward. O

Note that somed, might be trivial and somé, might be 0. Note also that star prod-
ucts (with bidifferential operators vanishing on the constants) provide an example, where
one also can ‘quantize’ an approximate identity, see [75]. Mebe a manifold and let
{0, },en be open subsets d#f such thatO,fI C On4t1, 0,5' is compact, and J, 0, =
M. Moreover, choosg, € C3°(M) such that supp, € 0,41 and Xn|0,g' = 1. Then
{C3° (O[], xn}nen is a topological approximate identity for any (local) star product
on M (for any Poisson structure) and the classical limi¢@§°(0,), x.}. Note that if M
is non-compact this is only a topological approximate identity since&€5°(0,)[[A]] #
Co°(M)[[A]]. Furthermore, we notice that a topological approximate identity is sufficient
for Proposition 2.8.

In order to discuss the classical limit trepresentations and bimodules of deformed
*-algebras we first have to consider the classical limit of pre-Hilbert spaces$) beta
pre-Hilbert space ove€[[A]] then we want to define its ‘classical limit’ in order to get a
pre-Hilbert space oveE. The first guess might b§/A$ but it turns out that this space is
sometimes still too big and does not necessarily allow for a reasoBaidéued Hermitian
product.

Lemma8.2. Let§) be a pre-Hilbert space ov&[[1]]. Then{¢ € H|C(p, ¢) = O} coincides
with the C[[A]]-submodule; = {¢ € H|C(p, ) = OVyY € H} and clearlyrHh C §H;.

Thusthe quotier®$ := $/$, is canonically a pre-Hilbert space ov€&with the Hermitian
product

(€, Cyr) = (¢, V), (8.1)

where¢ : § — €§ denotes the projection

Proof. Let ¢ satisfy€(¢, ¢) = 0 andy € §. Then(p, ¥) (¥, ¢) < (¢, ¢) (¥, ¥) shows
that&((¢, ¥)) = 0 since(y, ¥) has non-negativi-adic order which proves the first part
since the other inclusion is trivial. The other statements are straightforward. d

We shall call$y = ¢$ theclassical limitof §. Observe also the useful formula
C(zp + wy) = (2)&(¢) + C(w)E(Y) (8.2)

for z,w € C[[A]] and ¢,y € $. Since the higher powers df act trivially on the
C[[A]]-module ¢$) it is reasonable to consid€s) only asC-module. If$) is a pre-Hilbert
space ovef then$) = H[[A]] becomes a pre-Hilbert space ovef{ 1]] by extending the
Hermitian producC[[ A]]-(anti)linearly. In this case clearlg$ = § in a canonical way.
But note that® is defined forall pre-Hilbert spaces oveZ[[1]] which are not necessarily
of that form. Note also that it may happen tit&d = {0} even if$) # {0} (just rescale the
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Hermitian product by.). Next we shall consider the morphisms of pre-Hilbert spaces and
their classical limit.

Lemma 8.3. Let$H1, §H2, H3 be pre-Hilbert spaces ov&[[1]] and letA, A’ € B(H1, H2),
B € B($H2, H3) andz, w € C[[A]].

1. A®11) C H21 WwhenceZ A : €91 — €52 defined by
CA(CH) = C(Ap) (8.3)

is well-defined andC-linear.
2. €(zA+ wA) = €(2)C(A) + C(w)E(A)), €A € B(E€H1, €H2) with (CA)* = €(A%),
and¢(BA) = (E€B)(CA).

Proof. Let ¢ € $H1. then&(Ap, Ap) = C(A*A¢, ») = 0 according to Lemma 8.2.
Thus A¢p € $H2 and €A is a well-definedC-linear map. The second part is an easy
computation. O

In other words we obtainfainctor¢ from the category of pre-Hilbert spaces o@Gff]]
into the category of pre-Hilbert spaces o@mMote that the fact thak[[A]] is ordered was
crucial for this construction of. We shall refer ta as theclassical limit functor

Now we shall investigate the classical limit bfepresentations of deformed algebras.
Let A be a*-algebra oveC and let(A = A[[A]], u, I) be a*-algebra deformation ofl.
For a*-representation ol we obtain the following lemma.

Lemma 8.4. Let (A, u, I) be a*-algebra deformation of &-algebra.A over C and let
m . A — B(H) be a*-representation ofd on a pre-Hilbert spacd) over C[[A]]. Then
7=Cr:A=CA— B(H)

(€m (CA))Co ‘= L(m (A)9) (8.4)

defines &-representation ofd on €.

Proof. The well-definedness is shown analogously to the last lemma and the
*-representation properties are a straightforward computation. O

Letus now discuss how additional properties bfrapresentation as mentioned in Section
2 behave under the classical limit. First it is clear that even i faithful then€xr need
not to be faithful at all. While it is not clear in general whether the classical limit of a
non-degeneraté-representation is again non-degenerate, this is certainly true for strong
non-degeneracy: if for atp € $ we findA; € A andy; € § such thatp = ), w(A)V;
then€¢ = >, ¢mw (CA;)Cy; shows that’zw is strongly non-degenerate. Now assumis
pseudo-cyclic with filtration$, },<; and pseudo-cyclic vecto,. Then definef, =
¢Hy and 2, = €2,. Then it is easy to check théH, },; defines a filtration of) =
¢$H and £2,, are pseudo-cyclic vectors far = ¢xr. If & is compatible with the filtration
{9« }acr thenw is compatible with the filtratiofi$), } <, - Let us finally consider anisometric
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intertwinerT : $; — $> for two *-representations 1 andm, of A. Then the mag =

CT : €91 — €Ho defined byC€T (C¢) = E€(T¢) is well-defined sincd is isometric.
Moreover,T is linear, still isometric, and obviously an intertwiner fo 1 and¢m,. If T is

even unitary theff is also unitary with invers& 1 = ¢(T ). Adjointable intertwiners are
already covered by Lemma 8.3. We summarize these results in the following proposition.

Proposition 8.5. Let(A = A[[A]], u, I) be a*-algebra deformation of &-algebra.A over
C. Then taking the classical limit GErepresentations yields a functor

¢: *rep(A) — *-rep(A), (8.5)

which maps strongly non-degenerate, filtered, and pseudo-éyajgresentations to strongly
non-degenerate, filtered, and pseudo-cytiepresentations, respectively

Remark 8.6. Note that this functor is not of the type of those functors obtained by algebraic
Rieffel induction since here we consider a functor between categorieepfesentations
of *-algebras over different rings

9. Classical limit and deformation of bimodules

With the set-up of the previous section, we now turn to the question of the classical limit
and deformation of bimodules. Lédd = A[[A]], ua, I4) and(B = B[[]], up, Ig) be
*-algebra deformations df-algebras4 and B over C. We consider &[[A]]-module X
which is equipped with a-A)-bimodule structure and.4-valued inner product, then the
first question is how to define the classical limig¥ 4. To this end we shall first discuss the
general case and specialize to more concrete cases afterwards. We 4seaibed inner
product to define the classical limit g€ 4 similarly to the classical limit of pre-Hilbert
spaces. Consider th&[ A]]-submodule

X, ={x e pXalVy € pX4:¢(x,y)4 =0} (9.1)

Then clearlyr gX 4 € X 4. We are thus able to define tkassical limitof gX 4 as the
guotient

X=¢%X4:=BXA/XL, (9.2)

and denote by = ¢x € X the equivalence class ®fe gX 4. ThoughX is in principle a
C[[A]]-module, all higher powers of act trivially on X whence we regaréf asC-module

only. We shall now prove that all relevant structures pass to the classical limit. First notice
that theB-left actionLg as well as thed-right actionR 4 pass to the quotient due to (X5)
and (X3), respectively. Moreover, it is clear they yield left and right actions of the classical
limits. Thus we can define #¢.A4)-bimodule structure oft by setting

Lg(B)(€x) :=&(Lg(B)x) and (€x)R4(A) :=CxRA(A)), (9-3)
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which gives indeed a well-define®{A4)-bimodule structure ogX 4 := X. Next, one
checks that

(€x, Cy) 4 = C({x, y)A) (9.4)
defines amd-valued inner product, where the well-definedness follows directly from (9.1).
Note that(, -) 4 automatically satisfies the property that(#x, €y) 4 = 0 for all €y
then€x = 0. Nevertheless note, as in Remark 5.17, that it is not necessarily true that
(€x, €x) 4 = 0 implies€x = 0. Moreover, the various properties @f -) 4 are inherited
by (-, ).

Lemma9.1. If {-, -) 4 satisfiegX1)—(X3), (X4a),and(X5) then(-, -) 4 satisfiegX1)—(X3),
(X4a),and(X5), respectively. IEX 4 satisfiegP1)—(P3}thengX 4 also satisfiegP1)—(P3).

Proof. The properties (X1)—(X3), (X4a), and (X5) are an easy check. Thus let us consider
(P1) where we assunfé = @;c;X". Then clearly}"; ;€% coincides with the whole
spacefX and the sum is also orthogonal. But from the above remark we conclude that the
sum is also direct and hence (P1) is valid for the classical limit. Finally (P2) is obvious and
(P3) follows by takingz2(") as pseudo-cyclic vectors fak®. O

For the fullness condition (X6) we may even use a topological version using aéc
topology of A. We define

(tX6) C[[A]]-span{(x, ¥y} alx,y € X 4} is A-adically dense itd = A[[ 1],

which actually will be sufficient for our constructions. In particular, the classical limit of
(tX6) yields (X6) through analogous arguments as in the proof of Lemma 8.1:

Lemma 9.2. If the A-valued inner product., -) 4 satisfies(tX6) then the classical limit
(-, -) 4 satisfiegX6).

Let us finally discuss the two positivity requirements (X4) and (P), which turn out to be
more involved. We have already observed that the classical limit of a poSifiwg]-linear
functional ofA is a positiveC-linear functional ofA. On the other hand, there may be ‘fewer’
positiveC[[ A]]-linear functionals ofd and thus the conditiotx, x) 4 € A" forx e gX 4
would imply only aweakercondition in the classical limit and thus one could not necessarily
guarantedCx, €x) 4 € A for €x € gX 4, i.e. (X4) for the classical limit. Nevertheless,
in the case of @ositive deformatiomve have ‘enough’ positive linear functionals fdr

Lemma 9.3. Let(A, u, 14) be a positive deformation of andgX 4 a (B-A)-bimodule
with.4-valued inner product. Theix4) for (-, -) 4 implies(X4) for the classical limit-, -) 4.

Proof. Letx = €x € gX 4 then we have to proveo({x, x) 1) > 0 for all positive linear
functionalswp : A — C. Choose a positiv€[[A]]-linear functionalw = Y °2 A w, :
A — C[[A]]with €w = wowhich exists sincel is a positive deformation. Thes((x, x) 4)
> 0 by (X4) implieswo({x, x) 4) > O. d
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Concerning the property (P) we face an analogous problem as for (X4) sitfeer) is
a*-representation ofl which appears as classical limit of‘aepresentatiors), ) of A
then we can easily conclude the semi-definite positivity of the induced inner prodygt
by taking the classical limit everywhere. The problem arises since nbirefiresentation
of A have to necessarily appear as classical limit'fapresentation Q. Thus one is led
to the question ofleformability of*-representationsf A into *-representations of a given
*-algebra deformatiotd of .A. We shall not discuss this matter any further in this work
but leave this as an open question for future investigations. Nevertheless, in most of our
examples the property (P) follows either from (P1)—(P3), which behave well with respect
to the classical limit, or can be shown directly by other techniques. Let us summarize the
results so far in the following proposition.

Proposition 9.4. Let A, B be *-algebra deformations of-algebras.A, B over C and
let gX 4 be a(B-A)-bimodule with ad-valued inner product-, -) 4 such that the prop-
erties (X1)—(X3), (X4a), (X5), (tX6)or (P1)—(P3)are satisfied. Then the classical limit
BX A = € X 4 carries a(B-.4)-bimodule structure and al-valued inner product satisfy-
ing (X1)—(X3), (X4a), (X5), (X6),or (P1)—-(P3)respectively. If in additiomA is a positive
deformation and-, -) 4 only satisfiegX4) instead of(X4a)then(-, -) 4 also satisfie$X4).

A simple computation yields the following useful relation between the furtBtgrof
algebraic Rieffel induction coming form @#{A)-bimodule and the functoRy of the
corresponding classical limit.

Proposition 9.5. Let A, B be *-algebra deformations of-algebras.A, B overC and let
BX 4 be a(B-A)-bimodule with.A-valued inner product satisfyin(X1)—(X5) and (P).
Assume furthermore that the classical limik 4 also satisfieqX4) and (P). Then the
functorse o Ry andRx o € are naturally isomorphic: for &-representatior($), =) of A
the mapU : €Rx(H) — RxC(H) defined forx € gX 4 andg € H by

UE([x ® ¢]) = [€x ® €] (9.5)

is a unitary intertwiner betwee@fRx (;r) andRx ().

Proof. Using the present results the well-definednest a$ easily established. The rest
is a simple computation. O

Let us now turn to equivalence bimodules ®and.A, where we shall assume that the
undeformed-algebras4 andB have an approximate identity. Then given an equivalence
bimodulegX 4 we have in principle two ways to define the classical limit: either we use
the A-valued inner product to defirfé; or we use thdB-valued inner product to define
X = {x egXy|Vy epXy4 : €gx,y) = 0} and use the corresponding quotients as
classical limit. Fortunately, both spaces coincide and we actually do not need the positivity
requirements:
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Lemma9.6. LetgX 4 be a(B-A)-bimodule with4- andB-valued inner products satisfying
(X21)—(X3), (X5), (tx6) and (Y1)—(Y3), (Y5), (tY6), respectively, as well akE3). Then
LX=%r.

Proof. We can proceed almost analogously as in the proof of Proposition 5.16. First we
need the following analogue of Lemma 5.15:8e€ B and assumkg(B)x € AgX 4 for all

x € gX 4 andletk, € BsatisfyE, B = B = BE,. Due to the topological fullness gf(-, -)

we findx;, y; € pX 4 suchthatE, = ), g(x;, y;) + AC with some element € B. Then

B =), glLp(Bo)xi,y;) + ABC’" = AC" shows thatB cannot have a zeroth order and
henceB = 0. Now letx € X, andy, z € X thenLg(g(y,x))z = YR4((x,2)4) € AX 4
implies thatB := €g(y, x) satisfied g(B) gX 4 < A X4 whenceB = 0. Thusx € ;X
follows. Reverting the argument finishes the proof. O

Thus the classical limigX 4 = €gX 4 =X 4/XL is a(B-A)-bimodule and inherits a
B-valued and4-valued inner product. In order to guarantee th#t, is indeed an equiva-
lence bimodule we have to guarantee the positivity requirements (X4) and (Y4) as well as
(P) and (Q). For the first two, it is sufficient to consider positive deformatibramdB of
A and B, respectively. For the second two, we can either impose the stronger conditions
(P1)—(P3) and (Q1)—(Q3) which behave well under the classical limit or we have to know
more on the deformability 6f-representations. For the next theorem we shall assume that
we are able to guarantee (P) and (Q) directly.

Theorem 9.7. Let A, B be positive deformations éfalgebrasA, B overC with approxi-
mate identities and IggX 4 be a(B-.A)-equivalence bimodulgvhere we actually only need
(tX6) and(tY6)). If the classical limitgX 4 =g X 4 /% satisfieqP)and(Q) thengX 4 is
a (B-A)-equivalence bimodule. X 4 satisfies in additiofP1)—(P3)and(Q1)—-(Q3)then
the classical limit is automatically an equivalence bimodule also satisfiy-(P3)and

(Q1)-(Q3).
Proof. It remains to show (E3) for the classical limit which is a simple computationl

We shall now discuss some more particular cases. First we can consider a bimodule for
the deformed algebras of the more particular fgg®)4 = X[[A]], whereX is aC-module.
From the deformation point of view this is a natural restriction. In this case we can use the
A-adic topology of¥[[A]] to define also topological versions of the conditions (P1)-(P3),
which are slightly weaker:

(tP1) There exis€[[A]]-submodulest”) € g% 4,i € I, such thate”) L %V for all

i # j e I with respecttq(-, -) 4 and®; ;X" is r-adically dense iBX_4 = X[[1]].
(tP2) TheA-right actionfR 4 preserves this direct sum.

(tP3) Eachx” is topologically pseudo-cyclic fok 4, i.e. there exist directed sub-
modulesX"},, ;o with pseudo-cyclic vector®(” such that J,,.;» X is A-adically
dense irg®,
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An easy check similar to the proof of Lemma 3.1 ensures that (tP1)—(tP3) still imply (P).
Then the next lemma is shown straightforwardly using analogous arguments as in the proof
of Lemma 8.1.

Lemma 9.8. If in addition, the bimodule is of the forgX4 = X[[A]] and satisfies
(tP1)—(tP3)hen the classical limigX 4 satisfieqP1)—-(P3).

The other important case is when thalgebras4 andB have sufficiently many positive
linear functionals (and approximate identities) and when we consider positive deformations
A andB which is the case in deformation quantization. Then one can characterize the space
X as in the case of pre-Hilbert spaces by the following lemma.

Lemma 9.9. The spacé;, coincides withix € gX 4|C(x,x) 4 = 0}.

Proof. One inclusion is trivial. For the other we considety € gX 4, then we have for all
positiveC[[ A]]-linear functionalsy : A — C[[A]] the inequalityw ({x, y) 4)w({x, ¥)4) <
o((x,x) 0wy, ¥)4). Hence we obtain in the classical limit

wo(€(x, y) A)wo(E(x, ¥) 4) < wo(E(x, x) A)wo(E(y, ¥)A),

wherewg = €w is the classical limit ofo. If €(x, x) 4 = 0 thenwo(C(x, y) 4) = O follows.
SinceA is a positive deformation any positive linear functionakodccurs as classical limit

of somew and since4 has sufficiently many positive linear functionals and an approximate
identity it follows from Proposition 2.8 that(x, y) 4 = 0. O

Thus in this case we automatically end up with a classical J#il of gX 4 which satis-
fies (X4). Hence, in the case of an equivalence bimogi#¥gq we obtain anon-degenerate
equivalence bimodulgX 4 in the classical limit (whenever we can guarantee (P) and (Q)
for gX 4).

As an application to deformation quantization we observedfjatM) as well a<C > (M)
have sufficiently many positive linear functionals (useatfanctionals) as well as approxi-
mate identities, and that star products on symplectic manifolds are positive deformations, see
[23, Proposition 5.1] and Corollary B.5. Thus we are in the ‘optimal’ situation in this case.
Nevertheless, to show that formally Morita equivalent star products imply diffeomorphic
underlying manifolds, we essentially do not need any positivity requirements. In fact, we
only need a bimodule satisfying (E1)—(E3) without (X4) and (Y4) for the quantized algebras
in order to obtain a bimodule satisfying (E1)—(E3) (without (X4) and (Y4)) in the classical
limit. This is already sufficient to guarantee that the underlying manifolds are diffeomorphic
according to the results on commutatfiralgebras in Section 7 whence we can state this
result for arbitrary Poisson manifolds.

Corollary 9.10. Let(M, %) and(M, %) be Poisson manifolds with Hermitian star products
such that for(C®°(M)[[7]], x) and (C®(M)[[A]], %) there exists a bimodule satisfying
(E1)-(E3) (ot necessarilyX4) and(Y4)). Then M andM are diffeomorphic
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In particular the above corollary gives an ‘asymptotic’ explanation why Morita equivalent
(inthe C*-algebraic sense) quantum tori have to have at least the same classical dimension,
see also [69] for a more sophisticated discussion on the Morita equivalence of quantum tori.

Let us now conclude with a few remarks on the ‘reverse’ question, namely of defor-
mation of bimodules. Assume that twiealgebra deformationgl, B of two *-algebras
A, B over C are given and let furthermore 8{A)-bimodulezX 4 with A-valued inner
product(-, -) 4 with some properties like, e.g. (X1)—(X5), (P), or (P1)—-(P3) be given. Then
a (B-A)-bimodule deformatiomf zX 4 is a B-A)-bimodulegX 4 with A-valued inner
product, having the same properties, such that the classical lirgof is zgX 4. More
restrictively, one can demand the¥ 4 = X _4[[A]] as C[[A]]-module.

In general the question of existence of such a deformation is very hard to attack: for
the deformation of the bimodule structure alone one can apply the usual cohomological
techniques which are already rather complicated as we have to deal with a bimodule instead
of a module. Thus the Hochschild cohomology®®& A°P with values ingX 4 viewed
asB ® A°P-module becomes relevant. But since we also wandaralued inner product
one has even more obstructions as one wantstivity of this inner product. Thus the
inequalitiesoccurring in the positivity requirements do not seem to permit a cohomological
approach and thus one has to develop further techniques in order to deal with this question.

Another question concerning the deformations of such bimodules is the uniqueness of the
deformations: here one has to develop a reasonable notion of ‘equivalence of deformations’.
One possibility is that one calls two deformationsg3€ 4 functorially equivalenif the
corresponding functors of algebraic Rieffel induction are naturally isomorphic. We shall
leave these questions to future work and discuss only one example based on Proposition
4.8.

Let® : B — A be a*-homomorphism of-algebras ove€ and let*-algebra deforma-
tions A andB of A andB, respectively, be given. Then we consider tBe4)-bimodule
o B)A with the A-valued inner product as in (4.7). If we are able to find a deformation
@ =) 2P, of @ = Pginto a*-homomorphism® : B — A of the deformed alge-
bras then it is an easy check that the corresponding bimgggled 4 is a deformation of
o(B)AA: in this case the complicated question of the positivity properties (X4) and (P) is
trivially answered by Proposition 4.8 and we are ‘only’ faced with the cohomological prob-
lem of finding a deformation of &homomorphism, which is of course still complicated
enough.

Proposition 9.11. Let A, B be*-algebra deformations df-algebras4 and B overC and

let® : B — A be a*-homomorphism. Thepg).A 4 is a deformation of 5.4 4, Where
@ : B — Aisthe classical limit ofb.

10. Conclusion and further questions

We shall conclude this work with some final remarks and additional questions arising
from our approach to Rieffel induction and Morita equivalence. We hope a foundation has
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been laid for further investigations and applications of these ideas, which we plan to study
in the future.

First of all, the relation of the original notion of Rieffel induction and Morita equivalence
for C*-algebras to our more algebraic point of view needs further study. Many of our
algebraic results, including the proofs, are motivated byGhealgebraic case so it would
be interesting to see to what extent further results can be carried to the purely algebraic
framework. First steps into this direction are done in [23]. On one hand, this can help
understanding what is particular &*-algebras and, on the other hand, one could make
many of theC*-algebra results available also for otfiealgebras, which is interesting from
the mathematical and physical points of view. In particular, studyiatpebras ove€ =
CI[A]]is of special interest, as this ring governs various asymptotic situations in physics: the
formal parametex could correspond to Planck’s constérds in deformation quantization
but also to a coupling constaatas in various versions of perturbation theory (see, e.g.,
[34,35] for recent usage of the order structureRffr]] in the context of quantum field
theory). A better understanding of concrete connections between formal*aaliebraic
Morita equivalence would be of special interest for the case of quantum tori, since they have
gained increasing attention due to their relation to string and M theories, see, e.g.,[30,69,71].
It seems reasonable to apply the asymptotic approach @§[nd] to this example, since
the quantum tori are entirely determined by their classical, flat Poisson structiifeaord
the corresponding Weyl-Moyal star product.

Second, again motivated by deformation quantization, one can try to develop topolog-
ical versions of the constructions in this paper ‘in between’ the purely algebraic context
and theC*-algebraic case. In deformation quantization, it seems that the locally convex
topologies of smooth functions are ‘closer’ to the formal approach thafi'theorm based
topologies, examples can be found in [15-17,62,63]. Thus it seems reasonable to use these
intermediate topologies to handle the convergence problems of formal deformations. One
can also use the canonical order topology of the underlying ordered ring to develop a
‘non-Archimedian functional analysis’, a point of view taken, e.g. in [21] and references
therein.

Third, from a more geometrical point of view, one should compare Xu’s notion of Morita
equivalence for Poisson manifolds with our notion for star products. At first glance, one
is tempted to view Xu’s notion as the ‘first non-trivial order’ of deformation quantization.
However, Corollary 9.10 and [80] (see also, e.g., [28, Proposition 8.6]) show that, at least
in this naive way, this is not the case. So the possible relation between these ideas need
further study. More generally, one could try to use the algebraic framework, especially for
C = CJ[[7]], to establish asymptotic analogues of quantum geometry in the spirit of Connes’
non-commutative geometry [29] and study (semi-)classical limits. Physizatiyld play
here the role of a parameter associated to the Planck scale.

Fourth, there arise several natural questions within the framework of deformation quanti-
zation. Most important is the task to determine the equivalence classes of Morita equivalent
star products (note that Theorem 9.7 suggests that the underlying manifold has to be the
same). We observe that Rieffel induction alone is of great interest as it may provide a way for
guantizing phase space reduction from the viewpoint of states and representations. While the
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reduction of the related observable algebras is quite well-understood in the most important
cases [14,40], a formulation for the states is still missing. We also remark that Landsman
uses Rieffel induction within th€*-algebraic framework to formulate analogues of phase
space reduction, see [51] and references therein. Again our approach seems to be most
suited to formulate an asymptotic analogue filling the gaps between [14] and [51]. Finally,
the relation between formal Morita equivalence and the locality structures as discussed in
[75] should be investigated and results like Proposition 4.2 should be further explored in
this context.

Fifth, there are further physical applications where the asymptotic point of view can be
used. We can mention here the WKB approximation scheme (as well as the closely related
short wave approximation in theoretical optics), see, e.g., [8]. It is not surprising, due to
the asymptotic character of this method, that it admits a formulation within the framework
of formal deformation quantization, see [17,20]. In particular, it seems possible to use our
results of Section 6 to find a transition from [17,20] to endomorphism-valued Hamiltonians
as discussed, e.g. in [36,37].

Finally, we mention some purely algebraic open questions. It would be interesting to
find more examples or counter-examples which illustrate how strong the notion of for-
mal Morita equivalence is. First, one could try to find an example of tvatgebras with
sufficiently many positive linear functionals and approximate identities which have equiva-
lent categories of strongly non-degeneratepresentations but no equivalence bimodule.
Recall that our example in Corollary 5.20 uses the Grassmann algebra which has ‘few’
positive linear functionals. A more general class of examples based on this idea is dis-
cussed in [44]. Second, we have not addressed the question of how the lattices of ide-
als (or*-ideals) are related for formally Morita equivalefialgebras. As in the case of
C*-algebras, one can prove that for formally Morita equivateatgebras, the lattices of
closed*-ideals are isomorphic. Here*aideal is called closed if it occurs as the kernel
of a *-representation, see [44]. In [44] we compute further ‘invariants’ of formal Morita
equivalence. In the case of deformation quantization, one can even imagine obtaining finer
results by considering the locality structure as in [75]. It appears that for the question of
formal Morita-invariants, the positivity requirements ((E4), (X4), (Y4)) might play only
a minor role and thus one should consider bimodules not necessarily fulfilling them (see
note below). Perhaps one is able to show the positivity requirements directly for some
cases (at least for strongly non-degeneratepresentations), as this is possible &
algebras.

Note. After the completion of this article, Prof. Ara brought his work [4,5] to our attention.

In [5], Ara develops the notion of Morita equivalence for (hon-degenerate and idempotent)
rings with involution (called Morité'-equivalence), which encompasses the notion of for-
mal Morita equivalence as defined here. For these rings, Ara considers suitable categories
of modules, studies certain types of (pairs of) functors defining equivalence of these cat-
egories and succeeds in proving a Morita-like theorem that characterizes these functors
in terms of the existence of 'inner product bimodules’ (which are essentially our equiva-
lence bimodules without the positivity requirements (X4), (Y4), (E4)). Ara also shows that
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Morita *-equivalent rings hav&-isomorphic centroids and, as a consequence, that Morita
*-equivalence implies-isomorphism for commutative rings. His results hold in our setting,
that is, for*-algebras ove€ = R(i), provided one assumes the existence of approximate
identities (to make th&-algebras non-degenerate and idempotent), and in particular can be
used to extend Proposition 7.6 and Corollary 7.7 to non-unital situations. However, the no-
tion of positivity, which is crucial throughout the present paper, is absentin Ara’s approach.
Moreover, several constructions and results presented here do not asstiratgttteras to

be non-degenerate or idempotent. In [44] we investigate the relations between these two
approaches more closely.
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Appendix A. Positive matrices over ordered rings

In this appendix we collect some results on positive matricé4,i(C), whereC = R(i)
with an ordered rindR. The main point we want to emphasize is that almost all results on
positive matrices known from¥,,(C) can be carried over to this more general situation if
one avoids the notion of square roots in the proofs.

Consider the freeC-module C" with canonical basig, ..., ¢, and define the usual
Hermitian product as in Section 6, where we have seenMh&€) coincides with3(C")
after the usual identification with EpdC"). ThusM,,(C) becomes &-algebra in the usual
way and we want to study the positive linear functionals and the positive eleme}sG§.
SinceM,,(C) is a free module any linear functional: M, (C) — C can be written in the
form

w: A o(A) =1tr(oA), with o € M,(C), (A1)

using the trace functional tr. Clearty is a real functional if and only ib = o*. As a
positive functional is necessarily real (sindg (C) has a unit element) we restrict ourselves
to Hermitian matriceg from now on.

Lemma A.l. Letp = o* € M,(C) thentr(oA*A) > Oforall A € M,(C) if and only if
(v, ov) > Oforall v e C".

Proof. If (v,ov) > 0 for all v € C” then considervl.(k) = Ay whence tfpA*A) =
> (P, 0v®) > 0 for all A € M,(C) follows. If on the other hand t(pA*A) > O for
all A then choosed with Ay; = v; fork = 1,...,n. Then tpA*A) = ) (v, ov) =
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n{v, ov) > 0. But sinceR has characteristic zero and > 0 we conclude(v, gv)
> 0. U

We call a Hermitian matriyp satisfying(v, ov) > 0 for all v € C" a density matrix
and hence we have established a one-to-one correspondence between density matrices and
positive linear functionals a#7,,(C).

In order to characterize the positive element&ijnC) we have first to pass to the quotient
fieldsR andC of R andC. Remember thaR is an ordered field such thRt<> R is order
preserving, and canonically one has= Ii(i). Then the canonical inclusioM,, (C) <
M, (é) is an injective*-homomorphism of-algebras ove€. The following lemma shows
that a density matriy € M, (C) is still a density matrix inM,, (é).

Lemma A.2. Letp € M, (C) be a Hermitian matrix. Thefw, ov) > Ofor all v € C" if
and only if(0, o0) > Oforall v € C".

Proof. The proofis obtained by observing that for finitely many eleménts C, written as
fractions, we can find a common denominator which we can choose real and
positive. O

Lemma A.3. Letp € Mn(é) be a density matrix. Then there exists a basis . ., v, of
C" and non-negative numbeys, ..., p, € R such that(v;, ov;) = §jj p; for all i, j.

Proof. This is standard, see, e.g., [45, Theorem 6.19], wipere 0 follows from p; =
(vi, ovi) = 0. O

Note that for the above lemma we have to use the quotient fielaisd C instead ofR
and C. Denoting byU € M, (C) the invertible matrix of the basis transformation, i.e.
e; = Uvy; fori =1, ..., n, we obtain the following form of

0= piU*PU =Y pU*PFPU € My(C)FT, (A.2)

1 1

whereP; = P¥ = Pl.2 € Mn(é) is the matrix such thaP;v = (¢;, v)e;. Note thatlU is not
unitary in general. Nevertheless we can use (A.2) to prove the following proposition.

Proposition A.4. Let A € M, (C) be Hermitian. Then A is positive if and only if A is a
density matrix, i.e{(v, Av) > Oforall v € C".

Proof. If A is positive then clearlyv, Av) > 0 for all v € C”" since the functionall —
(v, Av) is a positive linear functional. For the other direction we have to show) > 0
for all positive linear functionals : M,,(C) — C. Due to Lemma A.1 we have to show
tr(oA) > O for all density matrice® € M, (C), and Lemma A.2 allows us to consider
C instead ofC. Then tigA) = Y., pitr(U* P;,UA) = Y, pi (U*e;, AU*¢;) > 0 proves the
proposition. O
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As aremark we would like to mention thaRfis a real closed field the@ is algebraically
closed and thus any density matgixe M,,(é) can be diagonalized by a unitary matrix
with positive eigenvalues; > 0. Thus t{pA) can be computed in the eigenbasispof
simplifying the proof. On the other hand, an analogue of Lemma A.2 is not necessarily true
if the quotient fields are replace by the real and algebraic closures, respectively. In case
R=2ZR= Q and the real and algebraic closures@@fa simple continuity argument
proves an analogue of Lemma A.2 siri@as dense in its real closure with respect to the
order topology. But in general this is no longer true, e.g. the field of formal Laurent series
R((1)) is not dense with respect to the order topology in its real cloBgtz*)), the field
of formal Newton—Puiseux series, see, e.g., [17,21]. Let us finally mention the following
corollaries.

Corollary A.5. LetA, B € M,(C) be positive matrices then(AB) > 0.
Corollary A.6. LetA € M,(C)* thenA e M, (C)*+.

Corollary A.7. Let$1, $H2 be twoC-modules with positive semi-definite Hermitian pro-
ducts. Thenlp ® ¥, ¢’ @ V') g = (¢, d)1(¥, ¥')2 extends to a positive semi-definite
Hermitian product orf) = $H1 ® 92.

Proof. Lety = p1Qv1+---+¢, ¥, € Hthen(x, x) = tr(MN), whereM, N € M,(C)
are given by their matrix elemenidj = (¢;, ¢;)1 andN = (v}, ¥;)2. ClearlyM, N are
positive matrices sincé&, Mv) = (¢, ¢) > 0 wherep = vi¢1 + - - - + v, ¢, andv € C”,
and similar forN. Then(y, x)s > 0 by Corollary A.5. O

Appendix B. Positive linear functionals for C§°(M) and C*(M)

As deformation quantization is our main motivation, we shall use this appendix to describe
its classical limit and show that far3°(M) andC>° (M), our characterization of positive
linear functionals and algebra elements yields the expected results. Some subtleties arise
as the Riesz’ representation theorem, which essentially governs the situation, is usually
only considered in the continuous category while we have to work in the smooth category
using also functions with non-compact support. Thus the following lemmas, which should
be well-known, can be viewed as ‘positivity implies continuity’ statements in the smooth
category.

Lemma B.1. Letw : C°(M) @ C1 — C be a positive linear functional. Then is
continuous with respectto the sup-norm, jeg.f)| < (1| fll forall f € C3°(M)®C1.

Proof. Let f € Cgo(M)EB(Clthenufugol—?f € C3°(M) @ Clis non-negative whence
for all ¢ > 0 the function(|| f |2, + €)1 — f f is strictly positive. Thus the square root
is still smooth and contained i6;°(M) @ C1 whenceo ((| f12, + €)1 — ff) = O.
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Thusw(f f) < || fl%e (1) follows and with the Cauchy—Schwarz inequaliiy( f)|? <
o(f o) < | 1% w(2)?, the proof is finished. O

Thusw extends uniquely to th€*-algebra completion of §°(M) © C1 and by Riesz’
representation theorem, see, e.g., [70, p. 40], we concludewtimgiven by a positive
measure of finite volume given lay(1).

If we now considerC3° (M) instead, then a positive linear functional needs no longer
to be continuous in the sup-norm, take, 4= R and f fRf(x)xz dx, but ‘locally’
this is still true: choose an approximate identity,,, x,},en and letw : Cg°(M) — C
be a positive linear functional, thew), (1) := w(x. f x») is still positive and has compact
support in0,+1 such that the restrictions @f andw, on C3°(0,) coincide. A simple
computation shows that, can now be extended in a unique way to a well-defined positive
linear functional ofC5°(M) @ C1 by settingw, (1) = (. x») Whence we can apply the
last lemma. Thus, is given by a positive measure having compact suppo€,in; and
we thus conclude the following lemma.

Lemma B.2. Letw : C3°(M) — C be a positive linear functional. Thenis given by a
positive measure with finite volume for all compact subsets.of M

Finally, consider a positive linear functional: C*°(M) — C and letf € C*°(M). By
the Cauchy—Schwarz inequality we fifo((1 — x,,) /)12 < o (1 — x) A — x Do (f ),
where we used again an approximate identity. But sineeyl, € C3°(M) @ C1 we can
apply Lemma B.1 whence in particular((1 — x,)(1 — x»)) — 0 asn — oo. Thus
o((1—x,)f) — 0,100, and hence (x, f) — w(f). Thusw is completely determined by
its restriction toC3° (M) @ C1. In the case wher#f is non-compact we find ‘sufficiently
unbounded’ functiong € C*° (M) to conclude that the measure actually has not only finite
volume but even compact support.

Lemma B.3. Letw : C*°(M) — C be a positive linear functional. Thenis given by a
positive measure with compact support

Since the&S-functionals are clearly positive linear functionals it follows tif&k) > O for
all x € M is a necessary condition for a function to be a positive algebra element in sense
of Definition 2.3. The above form of the positive linear functional€6f (M) or C3°(M)
shows that this is also sufficient, as one would expect the corollary.

Corollary B.4. f € C®°(M)™ (or Cg°(M)*) if and only if f(x) > Oforall x € M.

Corollary B.5. Let(M, x) be a symplectic manifold with Hermitian star product. Then the
algebra(C>*(M)[[A]], *) is a positive deformatian

Proof. The cas€Cg°(M)[[A]], %) was shown in [23, Proposition 5.1]. Since any positive
linear functional ofC*°(M) is given by a positive linear functional afg°(M) having
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compact support and since the construction in [23, Proposition 5.1] does not increase the
support, the corollary follows. O
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